Planta Med 2006; 72(5): 458-467
DOI: 10.1055/s-2005-916241
Original Paper
Analytical Methods
© Georg Thieme Verlag KG Stuttgart · New York

Effects of Growth Conditions and Processing on Rehmannia glutinosa using Fingerprint Strategy

Wen-Te Chang1 , Uwe Thissen2 , Karl A. Ehlert2 , Maud M. Koek2 , Renger H. Jellema2 , Thomas Hankemeier4 , Jan van der Greef3 , 4 , Mei Wang1 , 3
  • 1TNO Quality of Life, Department of Applied Plant Sciences, Leiden, The Netherlands
  • 2TNO Quality of Life, Business Unit Analytical Sciences, Zeist, The Netherlands
  • 3SU BioMedicine, Zeist, The Netherlands
  • 4Division of Analytical Biosciences, LACDR, Leiden, The Netherlands
Further Information

Publication History

Received: June 29, 2005

Accepted: October 7, 2005

Publication Date:
30 January 2006 (online)

Abstract

Metabolite profiling in combination with multivariate statistics is a sophisticated method for quality assessment of natural products. For the development of a quality control strategy in Traditional Chinese Medicine (TCM), we have measured the metabolite fingerprints of Rehmannia glutinosa by GC-MS. Plants were grown under different climate and soil conditions in a phytotron and were processed by a variable number of repetitive steps to investigate the effects on both growth conditions and processing for material medica of R. glutinosa. The GC-MS data have been analyzed by principal component analysis (PCA) and the new approach of the ANOVA-simultaneous component analysis (ASCA) which can combine the information from a structured data design with multivariate analysis. The results clearly show the effect of the different factors and indicate directions for process improvement. When plants were grown under various temperatures, humidity and light intensities for a short period (3 weeks), no significant changes on studied metabolites were observed. However, significant changes were found between different processing cycles. The present data clearly indicate the importance of strictly controlling processing in R. glutinosa and illustrate the impact of growth conditions. This is the first report on the metabolite profile of R. glutinosa that provides a base for the establishment of a quality control strategy.

Abbreviations

PCA:principal component analysis

ASCA:ANOVA-Simultaneous component analysis

QA/QC:quality assurance and quality control

TCM:Traditional Chinese Medicine

References

  • 1 Verpoorte R, van der Heiden R, Memelink J. Engineering the plant cell factory for secondary metabolite production.  Transgenic Res. 2000;  9 323-43
  • 2 Itenov K, Molgaard P, Nyman U. Diurnal fluctuations of the alkaloid concentration in latex of poppy Papaver somniferum is due to day-night fluctuations of the latex water content.  Phytochemistry. 1999;  52 1229-34
  • 3 Scholten W K. The new European Union Good Agricultural and Collection Practice Rules: is good × practice good enough if it does not result in batch-to-batch consistency.  Drug Inf J. 2003;  37 321-7
  • 4 Wang M, Lamers R AN, Korthout H AAJ, van Nesselrooij J HJ, Witkamp R F, van der Heijden R. et al . Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology.  Phytother Res. 2005;  19 173-82
  • 5 Zhu Y P. Chinese Materia Medica, chemistry, pharmacology and applications. London; Taylor & Francis 1998: pp 34-5
  • 6 Sengupta S, Toh S, Sellers L A, Skepper J N, Koolwijk P, Leung W. et al . Modulating angiogenesis, the yin and the yang in ginseng.  Circulation. 2004;  110 1219-25
  • 7 Mechoulam R, Ben-Zvi Z, Shani A, Zemler H, Levy S. Cannabinoids and Cannabis Activity.  In: Cannabis and its derivatives. Crawn J, Paton WDM, editors London; Oxford University Press 1972: pp 1-13
  • 8 Williamson E M, Evans F J. Cannabis in clinical practice.  Drug. 2000;  60 1303-14
  • 9 Chan K. Generating finger printings from analytical techniques alone is not enough in the assurance for quality, efficacy and safety of Chinese medicinal herbs and herbal products.  Anal Sci. 2001;  17 (Supplement) a409-12
  • 10 Van der Greef J, Stroobant P, van der Heijden R. The role of analytical sciences medical system biology.  Curr Opin Chem Biol. 2004;  8 559-65
  • 11 Stobiecki M, Kachlick P. Metabolomics and metabolite profiling-can we achieve the goal?.  Acta Physiol Plant. 2005;  27 109-16
  • 12 Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey R N, Willmitzer L. Metabolites profiling for plant functional genomics.  Nat Biotechnol. 2000;  18 1157-61
  • 13 Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E. et al . the Golm metabolome database.  Bioinformatics. 2005;  21 1635-8
  • 14 Fan T WM, Lane A L, Shenker M, Bartley J P, Crowley D, Higashi R M. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS.  Phytochemistry. 2001;  57 209-21
  • 15 Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L. et al . Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems.  Plant Cell. 2001;  13 11-29
  • 16 Wagner C, Sefkow M, Kopka J. Construction and application of mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles.  Phytochemistry. 2003;  62 887-900
  • 17 Jackson J. A user’s guide to principal component analysis. New York; Wiley & Sons 1991
  • 18 Smilde A K, Jansen J J, Hoefsloot H CJ, Lamers R JAN, van der Greef J, Timmerman M E. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data.  Bioinformatics. 2005;  21 3043-8
  • 19 Searle S R. Linear models. New York; Wiley & Sons 1971
  • 20 Wang Y, Tang H, Nicholson J K, Hylands P, Sampson J, Whitcombe I. et al . Metabolomic strategy for the classification and quality control of phytomedicine: a case study of Chamomile flower (Matricaria recutita L.)  Planta Med. 2004;  70 250-5
  • 21 Choi Y H, Kim H Y, Hazekamp A, Erkelens C, Lefeber A WM, Verpoorte R. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principle component analysis.  J Nat Prod. 2004;  67 953-7
  • 22 Cai Z, Lee F SC, Wang X R, Yu W J. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs.  J Mass Spectrom. 2002;  37 1013-24
  • 23 Lao S C, Li S P, Kan K KW, Li P, Wan J B, Wang Y T. et al . Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction.  Anal Chim Acta. 2004;  526 131-7
  • 24 Guo F Q, Liang Y Z, Xu C HM, Huang L F, Li X N. Comparison of the volatile constituents of Artemisia capillaries from different locations by gas chromatography-mass spectrometry and projection method.  J Chromatogr A. 2004;  1054 73-9
  • 25 Huang K C. The pharmacology of Chinese herbs. Boca Raton; CRC Press 1993: p 281
  • 26 Nishmura H, Sasaki H, Morota T, Chin M, Mitsuhashi H. Six iridoid glycosides from Rehmannia glutinosa .  Phytochemistry. 1989;  28 2705-9
  • 27 Tomoda M, Miyamoto H, Shimizu N, Gonda R, Ohara N. Two acidic polysaccharides having reticuloendothelial system-protentiating activity from the raw root of Rehmannia glutinosa .  Biol Pharm Bull. 1994;  17 1456-9
  • 28 Kitagawa I, Fukuda Y, Taniyama T, Yoshikawa M. Chemical studies on crude drug processing. VIII. On the constituents of Rehmanniae radix. (2). Absolute stereostructures of rehmaglutin C and glutinoside isolated from Chinese Rehmanniae radix, the dried root of Rehmannia glutinosa Libosch.  Chem Pharm Bull. 1995;  43 1096-100
  • 29 Yoshikawa M, Fukuda Y, Taniyama T, Kitagawa I. Chemical studies on crude drug processing IX. On the constituents of Rehmannia radix. (3). Absolute stereostructures of rehamnaionosides A, B, and C and rehmapicroside, biologically active ionone glucosides and a monoterpene glucoside isolated from Chinese Rehmannia radix.  Chem Pharm Bull. 1996;  44 41-7
  • 30 Koek M, Muilwijk M, van der Werf M, Hankemeier T. Microbial metabolomics with gas chromatography mass spectrometry submitted. 
  • 31 Yang J X. Cultures of medicinal plants. Beijing; Zhongguo Nongye Press 1993
  • 32 Lee S S. Study on the Rehmannia processing. Annual reports of Committee on Chinese Medicine and Pharmacy, Department of Health Executive Yuan, Taiwan; 2002
  • 33 Kaplan F, Kopka J, Haskell D W, Zhao W, Schiller K C, Gatzke N. et al . Exploring the temperature-stress metabolome of Arabidopsis .  Plant Physiol. 2004;  136 4159-68
  • 34 Duun W B, Ellis D I. Metabolomics: current analytical platforms and methodologies.  Trends Anal Chem. 2005;  24 285-94
  • 35 Van der Greef J, Davidov E, Verheij E, Vogels J, van der Heijden R, Adourian A S. et al .The role of metabolomics in systems biology. A new vision for drug discovery and development. In: Harrugan GG, Goodacre R, editors Metabolic profiling: its role in biomarker discovery and gene function analysis. Boston; Kluywer Academic 2003: pp 170-98

Mei Wang

TNO Quality of Life

Department of Applied Plant Sciences

Zernikedreef 9

2333 CK Leiden

The Netherlands

Phone: +31-71-518-1558

Fax: +31-71-518-1933

Email: wang@Pharma.tno.nl