Semin Reprod Med 2005; 23(3): 234-241
DOI: 10.1055/s-2005-872451
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Oocyte Maturation: The Coming of Age of a Germ Cell

Michelle Jamnongjit1 , Stephen R. Hammes1
  • 1Department of Internal Medicine, Division of Endocrinology and Metabolism, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
Further Information

Publication History

Publication Date:
01 August 2005 (online)

ABSTRACT

Normal female fertility relies on proper development of the oocyte. This growth culminates just prior to ovulation, when oocyte maturation occurs. Oocyte maturation refers to a release of meiotic arrest that allows oocytes to advance from prophase I to metaphase II of meiosis. This precisely regulated meiotic progression is essential for normal ovulation and subsequent fertilization, and involves changes in the delicate balance between factors promoting meiotic arrest and others that are stimulating maturation. Most of the inhibitory mechanisms appear to involve the upregulation of intracellular cyclic adenosine monophosphate levels. These processes may include direct transport of the nucleotide into oocytes via gap junctions, G protein-mediated stimulation of adenylyl cyclase, and inhibition of intracellular phosphodiesterases. In contrast, potential factors that play roles in triggering oocyte maturation include gonadotropins (e.g., follicle-stimulating factor and luteinizing hormone), growth factors (e.g., amphiregulin and epiregulin), sterols (e.g., follicular fluid-derived meiosis-activating sterol), and steroids (e.g., testosterone progesterone, and estradiol). Delineating the complex interactions between these positive and negative components is critical for determining the role that oocyte maturation plays in regulating follicle development and ovulation, and may lead to novel methods that can be used to modulate these processes in women with both normal and aberrant fertility.

REFERENCES

  • 1 Albertini D F, Carabatsos M J. Comparative aspects of meiotic cell cycle control in mammals.  J Mol Med. 1998;  76 795-799
  • 2 Albertini D F, Combelles C M, Benecchi E, Carabatsos M J. Cellular basis for paracrine regulation of ovarian follicle development.  Reproduction. 2001;  121 647-653
  • 3 diZerega G S, Hodgen G D. Folliculogenesis in the primate ovarian cycle.  Endocr Rev. 1981;  2 27-49
  • 4 Griffin J E, Ojeda S R. Textbook of Endocrine Physiology, 4th ed. New York; Oxford University Press 2000
  • 5 Mandl A M, Zuckerman S. The relation of age to numbers of oocytes.  J Endocrinol. 1951;  7 190-193
  • 6 Johnson J, Canning J, Kaneko T, Pru J K, Tilly J L. Germline stem cells and follicular renewal in the postnatal mammalian ovary.  Nature. 2004;  428 145-150
  • 7 Hausen P. The Early Development of Xenopus laevis: An Atlas of the Histology New York; Springer-Verlag 1991
  • 8 Keem K, Smith L D, Wallace R A, Wolf D. Growth rate of oocytes in laboratory maintained Xenopus laevis .  Gamete Res. 1979;  2 125-135
  • 9 Smith C L. Reproduction in female Amphibia.  Mem Soc Endocrinol. 1955;  4 39-56
  • 10 Edwards R G. Maturation in vitro of human ovarian oocytes.  Lancet. 1965;  2 926-929
  • 11 Edwards R G. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.  Nature. 1965;  208 349-351
  • 12 Maller J L, Krebs E G. Regulation of oocyte maturation.  Curr Top Cell Regul. 1980;  16 271-311
  • 13 Smith L D, Ecker R E. The interaction of steroids with Rana pipiens oocytes in the induction of maturation.  Dev Biol. 1971;  25 232-247
  • 14 Conti M, Andersen C B, Richard F et al.. Role of cyclic nucleotide signaling in oocyte maturation.  Mol Cell Endocrinol. 2002;  187 153-159
  • 15 Freissmuth M, Casey P J, Gilman A G. G proteins control diverse pathways of transmembrane signaling.  FASEB J. 1989;  3 2125-2131
  • 16 Mehats C, Andersen C B, Filopanti M, Jin S L, Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling.  Trends Endocrinol Metab. 2002;  13 29-35
  • 17 Conti M, Andersen C B, Richard F J, Shitsukawa K, Tsafriri A. Role of cyclic nucleotide phosphodiesterases in resumption of meiosis.  Mol Cell Endocrinol. 1998;  145 9-14
  • 18 Mehlmann L M, Jones T L, Jaffe L A. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte.  Science. 2002;  297 1343-1345
  • 19 Wiersma A, Hirsch B, Tsafriri A et al.. Phosphodiesterase 3 inhibitors suppress oocyte maturation and consequent pregnancy without affecting ovulation and cyclicity in rodents.  J Clin Invest. 1998;  102 532-537
  • 20 Morrill G A, Schatz F, Kostellow A B, Poupko J M. Changes in cyclic AMP levels in the amphibian ovarian follicle following progesterone induction of meiotic maturation. Effect of phosphodiesterase inhibitors and exogenous calcium on germinal vesicle breakdown.  Differentiation. 1977;  8 97-104
  • 21 Sadler S E, Maller J L. Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein.  J Biol Chem. 1981;  256 6368-6373
  • 22 Sadler S E, Maller J L. Inhibition of Xenopus oocyte adenylate cyclase by progesterone: a novel mechanism of action.  Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;  19 179-194
  • 23 Lutz L B, Cole L M, Gupta M K, Kwist K W, Auchus R J, Hammes S R. Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation.  Proc Natl Acad Sci USA. 2001;  98 13728-13733
  • 24 Sheng Y, Tiberi M, Booth R A, Ma C, Liu X J. Regulation of Xenopus oocyte meiosis arrest by G protein betagamma subunits.  Curr Biol. 2001;  11 405-416
  • 25 Gallo C J, Hand A R, Jones T L, Jaffe L A. Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes.  J Cell Biol. 1995;  130 275-284
  • 26 Hammes S R. The further redefining of steroid-mediated signaling.  Proc Natl Acad Sci USA. 2003;  100 2168-2170
  • 27a Hammes S R. Steroids and oocyte maturation-a new look at an old story.  Mol Endocrinol. 2004;  18 769-775
  • 27b Mehlmann L M, Saeki Y, Tanaka S et al.. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes.  Science. 2004;  306 1947-1950
  • 28 Gelerstein S, Shapira H, Dascal N, Yekuel R, Oron Y. Is a decrease in cyclic AMP a necessary and sufficient signal for maturation of amphibian oocytes?.  Dev Biol. 1988;  127 25-32
  • 29 Faure S, Morin N, Doree M. Inactivation of protein kinase A is not required for c-mos translation during meiotic maturation of Xenopus oocytes.  Oncogene. 1998;  17 1215-1221
  • 30 Eppig J J, Downs S M. Gonadotropin-induced murine oocyte maturation in vivo is not associated with decreased cyclic adenosine monophosphate in the oocyte-cumulus cell complex.  Gamete Res. 1988;  20 125-131
  • 31 Shim C, Lee D K, Lee C C, Cho W K, Kim K. Inhibitory effect of purines in meiotic maturation of denuded mouse oocytes.  Mol Reprod Dev. 1992;  31 280-286
  • 32 Downs S M, Daniel S A, Bornslaeger E A, Hoppe P C, Eppig J J. Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity.  Gamete Res. 1989;  23 323-334
  • 33 Eppig J J, Downs S M. The effect of hypoxanthine on mouse oocyte growth and development in vitro: maintenance of meiotic arrest and gonadotropin-induced oocyte maturation.  Dev Biol. 1987;  119 313-321
  • 34 Ackert C L, Gittens J E, O’Brien M J, Eppig J J, Kidder G M. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse.  Dev Biol. 2001;  233 258-270
  • 35 Browne C L, Wiley H S, Dumont J N. Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability.  Science. 1979;  203 182-183
  • 36 Herlands R L, Schultz R M. Regulation of mouse oocyte growth: probable nutritional role for intercellular communication between follicle cells and oocytes in oocyte growth.  J Exp Zool. 1984;  229 317-325
  • 37 Eppig J J. Further reflections on culture systems for the growth of oocytes in vitro.  Hum Reprod. 1994;  9 974-976
  • 38 Peng X R, Hsueh A J, LaPolt P S, Bjersing L, Ny T. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation.  Endocrinology. 1991;  129 3200-3207
  • 39 Downs S M, Daniel S A, Eppig J J. Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin.  J Exp Zool. 1988;  245 86-96
  • 40 Park J Y, Su Y Q, Ariga M, Law E, Jin S L, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle.  Science. 2004;  303 682-684
  • 41 Kanemitsu M Y, Lau A F. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase.  Mol Biol Cell. 1993;  4 837-848
  • 42 Lampe P D, Lau A F. The effects of connexin phosphorylation on gap junctional communication.  Int J Biochem Cell Biol. 2004;  36 1171-1186
  • 43 Xia G, Byskov A G, Andersen C Y. Cumulus cells secrete a meiosis-inducing substance by stimulation with forskolin and dibutyric cyclic adenosine monophosphate.  Mol Reprod Dev. 1994;  39 17-24
  • 44 Byskov A G, Yding Andersen C, Hossaini A, Guoliang X. Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH.  Mol Reprod Dev. 1997;  46 296-305
  • 45 Byskov A G, Andersen C Y, Nordholm L et al.. Chemical structure of sterols that activate oocyte meiosis.  Nature. 1995;  374 559-562
  • 46 Lu Z, Xia G, Byskov A G, Andersen C Y. Effects of amphotericin B and ketoconazole on mouse oocyte maturation: implications on the role of meiosis-activating sterol.  Mol Cell Endocrinol. 2000;  164 191-196
  • 47 Xie H, Xia G, Byskov A G, Andersen C Y, Bo S, Tao Y. Roles of gonadotropins and meiosis-activating sterols in meiotic resumption of cultured follicle-enclosed mouse oocytes.  Mol Cell Endocrinol. 2004;  218 155-163
  • 48 Yoshida Y, Yamashita C, Noshiro M, Fukuda M, Aoyama Y. Sterol 14-demethylase P450 activity expressed in rat gonads: contribution to the formation of mammalian meiosis-activating sterol.  Biochem Biophys Res Commun. 1996;  223 534-538
  • 49 Grondahl C, Breinholt J, Wahl P et al.. Physiology of meiosis-activating sterol: endogenous formation and mode of action.  Hum Reprod. 2003;  18 122-129
  • 50 Gross M D, Gosnell M, Tsarbopoulos A, Hunziker W. A functional and degenerate pair of EF hands contains the very high affinity calcium-binding site of calbindin-D28K.  J Biol Chem. 1993;  268 20917-20922
  • 51 Tsafriri A, Popliker M, Nahum R, Beyth Y. Effects of ketoconazole on ovulatory changes in the rat: implications on the role of a meiosis-activating sterol.  Mol Hum Reprod. 1998;  4 483-489
  • 52 Tsafriri A, Cao X, Vaknin K M, Popliker M. Is meiosis activating sterol (MAS) an obligatory mediator of meiotic resumption in mammals.  Mol Cell Endocrinol. 2002;  187 197-204
  • 53 Downs S M, Ruan B, Schroepfer Jr G J. Meiosis-activating sterol and the maturation of isolated mouse oocytes.  Biol Reprod. 2001;  64 80-89
  • 54 Yamashita M, Kajiura H, Tanaka T, Onoe S, Nagahama Y. Molecular mechanisms of the activation of maturation-promoting factor during goldfish oocyte maturation.  Dev Biol. 1995;  168 62-75
  • 55 Faerge I, Terry B, Kalous J et al.. Resumption of meiosis induced by meiosis-activating sterol has a different signal transduction pathway than spontaneous resumption of meiosis in denuded mouse oocytes cultured in vitro.  Biol Reprod. 2001;  65 1751-1758
  • 56 Vaknin K M, Lazar S, Popliker M, Tsafriri A. Role of meiosis-activating sterols in rat oocyte maturation: effects of specific inhibitors and changes in the expression of lanosterol 14alpha-demethylase during the preovulatory period.  Biol Reprod. 2001;  64 299-309
  • 57 Cavilla J L, Kennedy C R, Baltsen M, Klentzeris L D, Byskov A G, Hartshorne G M. The effects of meiosis activating sterol on in-vitro maturation and fertilization of human oocytes from stimulated and unstimulated ovaries.  Hum Reprod. 2001;  16 547-555
  • 58 Marin Bivens C L, Grondahl C, Murray A, Blume T, Su Y Q, Eppig J J. Meiosis-activating sterol promotes the metaphase I to metaphase II transition and preimplantation developmental competence of mouse oocytes maturing in vitro.  Biol Reprod. 2004;  70 1458-1464
  • 59 Smith L D, Ecker R E, Subtelny S. In vitro induction of physiological maturation in Rana pipiens oocytes removed from their ovarian follicles.  Dev Biol. 1968;  17 627-643
  • 60 Le Goascogne C, Sananes N, Gouezou M, Baulieu E E. Testosterone-induced meiotic maturation of Xenopus laevis oocytes: evidence for an early effect in the synergistic action of insulin.  Dev Biol. 1985;  109 9-14
  • 61 Lutz L B, Jamnongjit M, Yang W H, Jahani D, Gill A, Hammes S R. Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands.  Mol Endocrinol. 2003;  17 1106-1116
  • 62 Bayaa M, Booth R A, Sheng Y, Liu X J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism.  Proc Natl Acad Sci USA. 2000;  97 12607-12612
  • 63 Tian J, Kim S, Heilig E, Ruderman J V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation.  Proc Natl Acad Sci USA. 2000;  97 14358-14363
  • 64 Yamashita Y, Shimada M, Okazaki T, Maeda T, Terada T. Production of progesterone from de novo-synthesized cholesterol in cumulus cells and its physiological role during meiotic resumption of porcine oocytes.  Biol Reprod. 2003;  68 1193-1198
  • 65 Sadler S E, Jacobs N D. Stimulation of Xenopus laevis oocyte maturation by methyl-beta-cyclodextrin.  Biol Reprod. 2004;  70 1685-1692
  • 66 Eppig J J, Freter R R, Ward-Bailey P F, Schultz R M. Inhibition of oocyte maturation in the mouse: participation of cAMP, steroid hormones, and a putative maturation-inhibitory factor.  Dev Biol. 1983;  100 39-49
  • 67 Rice C, McGaughey R W. Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes.  J Reprod Fertil. 1981;  62 245-256
  • 68 Smith D M, Tenney D Y. Effects of steroids on mouse oocyte maturation in vitro.  J Reprod Fertil. 1980;  60 331-338
  • 69 Schultz R M, Montgomery R R, Ward-Bailey P F, Eppig J J. Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP, and testosterone.  Dev Biol. 1983;  95 294-304
  • 70 Gill A, Jamnongjit M, Hammes S R. Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis.  Mol Endocrinol. 2004;  18 97-104
  • 71 Borman S M, Chaffin C L, Schwinof K M, Stouffer R L, Zelinski-Wooten M B. Progesterone promotes oocyte maturation, but not ovulation, in nonhuman primate follicles without a gonadotropin surge.  Biol Reprod. 2004;  71 366-373
  • 72 Ehrmann D A, Sturis J, Byrne M M, Karrison T, Rosenfield R L, Polonsky K S. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus.  J Clin Invest. 1995;  96 520-527
  • 73 Dunaif A, Segal K R, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome.  Diabetes. 1989;  38 1165-1174
  • 74 Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis.  Endocr Rev. 1997;  18 774-800
  • 75 Pache T D, Chadha S, Gooren L J et al.. Ovarian morphology in long-term androgen-treated female to male transsexuals. A human model for the study of polycystic ovarian syndrome?.  Histopathology. 1991;  19 445-452
  • 76 Speiser P W. Congenital adrenal hyperplasia: transition from childhood to adulthood.  J Endocrinol Invest. 2001;  24 681-691
  • 77 Ito Y, Fisher C R, Conte F A, Grumbach M M, Simpson E R. Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries.  Proc Natl Acad Sci USA. 1993;  90 11673-11677
  • 78 Gambineri A, Pelusi C, Genghini S et al.. Effect of flutamide and metformin administered alone or in combination in dieting obese women with polycystic ovary syndrome.  Clin Endocrinol (Oxf). 2004;  60 241-249
  • 79 Rittmaster R S. Antiandrogen treatment of polycystic ovary syndrome.  Endocrinol Metab Clin North Am. 1999;  28 409-421
  • 80 Eagleson C A, Gingrich M B, Pastor C L et al.. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone.  J Clin Endocrinol Metab. 2000;  85 4047-4052
  • 81 De Leo V, Lanzetta D, D’Antona D, la Marca A, Morgante G. Hormonal effects of flutamide in young women with polycystic ovary syndrome.  J Clin Endocrinol Metab. 1998;  83 99-102
  • 82 Koivunen R M, Morin-Papunen L C, Ruokonen A, Tapanainen J S, Martikainen H K. Ovarian steroidogenic response to human chorionic gonadotrophin in obese women with polycystic ovary syndrome: effect of metformin.  Hum Reprod. 2001;  16 2546-2551
  • 83 Balen A. Ovulation induction for polycystic ovary syndrome.  Hum Fertil (Camb). 2000;  3 106-111
  • 84 Coffler M S, Patel K, Dahan M H et al.. Evidence for abnormal granulosa cell responsiveness to follicle-stimulating hormone in women with polycystic ovary syndrome.  J Clin Endocrinol Metab. 2003;  88 1742-1747

Stephen R HammesM.D. Ph.D. 

Department of Internal Medicine, Division of Endocrinology and Metabolism, Department of Pharmacology

University of Texas Southwestern Medical Center at Dallas

5323 Harry Hines Blvd., Dallas, TX 75390-8857

Email: stephen.hammes@utsouthwestern.edu

    >