Subscribe to RSS
DOI: 10.1055/s-2005-872262
Synthesis and Optical Properties of the C-8 Adduct of Benzo[a]pyrene and Deoxyguanosine
Publication History
Publication Date:
03 August 2005 (online)
Abstract
8-(Benzo[a]pyren-6-yl)-2′-deoxyguanosine (Bp-dG) was prepared via a palladium-catalyzed Suzuki-Miyaura-type cross-coupling reaction from the pinacol ester of 6-benzo[a]pyrenyl boronic acid and the corresponding brominated deoxyguanosine precursor. The absorption and steady-state fluorescence properties of Bp-dG were characterized and compared with that of 6-benzo[a]pyrene. The modified nucleoside Bp-dG exhibits an unexpected high stability towards nucleosidic hydrolysis even under irradiation with UV light.
Key words
DNA damage - nucleoside - cross-coupling - palladium - pyrene
- 1
Luch A. Chem. Unserer Zeit 2001, 35: 294 - 2
Lowe SW.Lin AW. Carcinogenesis 2000, 21: 485 - 3
Lakshman MK.Ngassa FN.Bae S.Buchanan DG.Hahn H.-G.Mah H. J. Org. Chem. 2003, 68: 6020 - 4
Rama Krishna NVS.Fao G.Padmavathi NS.Cavalieri EL.Rogan EG.Cerny RL.Gross ML. Chem. Res. Toxicol. 1992, 5: 293 -
5a
Rogan EG.Cavalieri EL.Tibbels SR.Cremonesi P.Warner CD.Nagel DL.Tomer KB.Cerny RL.Gross ML. J. Am. Chem. Soc. 1988, 110: 4023 -
5b
Cremonesi P.Cavalieri EL.Rogan EG. J. Org. Chem. 1989, 54: 3561 -
6a
Chen L.Devanesan PD.Higginbotham S.Ariese F.Jankowiak R.Small GJ.Rogan EG.Cavalieri EL. Chem. Res. Toxicol. 1996, 9: 987 -
6b
Devanesan PD.Higginbotham S.Ariese F.Jankowiak R.Suh M.Small GJ.Cavalieri EL.Rogan EG. Chem. Res. Toxicol. 1996, 9: 1113 - 7
Lhomme J.Constant J.-F.Demeunynck M. Biopolymers 1999, 52: 65 -
8a
Amann N.Wagenknecht H.-A. Synlett 2002, 687 -
8b
Mayer E.Valis L.Huber R.Amann N.Wagenknecht H.-A. Synthesis 2003, 2335 - See reviews:
-
9a
Lakshman MK. J. Organomet. Chem. 2002, 653: 234 -
9b
Agrofoglio LA.Gillaizeau I.Saito Y. Chem. Rev. 2003, 103: 1875 -
9c
Hocek M. Eur. J. Org. Chem. 2003, 245 -
10a
Lakshman MK.Hilmer JH.Martin JQ.Keeler JC.Dinh YQV.Ngassa FN.Russon LM. J. Am. Chem. Soc. 2001, 123: 7779 -
10b
Lakshman MK.Gunda P. Org. Lett. 2003, 5: 39 - 11
Western EC.Daft JR.Johnson EM.Gannett PM.Shaugnessy KH. J. Org. Chem. 2003, 68: 6767 - 12
Havelková M.Dvorák D.Hocek M. Synthesis 2001, 1704 - 13
Schoffers E.Olsen PD.Means JC. Org. Lett. 2001, 3: 4221 - The crude product was purified by column chromatography on silica gel(hexane) and recrystallized from acetone yielding a yellow solid (86%). R f = 0.23 (hexane). All spectroscopic data of 3 were in agreement with the published data:
-
14a
Dewhurst F.Kitchen DA. J. Chem. Soc., Perkin Trans. 1 1972, 710 -
14b
Cho BP.Harvey RG. J. Org. Chem. 1987, 52: 5668 -
15a
Muramata M. J. Org. Chem. 2000, 65: 164 -
15b
Krämer CS.Zimmermann TJ.Sailer M.Müller TJJ. Synthesis 2002, 1163 - 17 All spectroscopic data of 6 were in agreement with the published data:
Gannett P.Sura TP. Synth. Commun. 1993, 23: 1611 -
20a
Fiebig T.Wagenknecht H.-A. In Charge Transfer: From Mechanism to Applications Wiley-VCH; Weinheim: 2005. p.195-223 -
20b
Trifonov A.Buchvarov I.Wagenknecht H.-A.Fiebig T. Chem. Phys. Lett. 2005, 409: 277 -
21a See review:
Grabowksi ZR.Rotkiewicz K.Rettig W. Chem. Rev. 2003, 103: 3899 -
21b For an example, see:
Fiebig T.Stock K.Lochbrunner S.Riedle E. Chem. Phys. Lett. 2001, 345: 81 -
22a
O’Connor D.Shafirovich VY.Geacintov NE. J. Phys. Chem. 1994, 98: 9831 -
22b
Shafirovich VY.Courtney SH.Ya N.Geacintov NE. J. Am. Chem. Soc. 1995, 117: 4920 - 23
Kubota T.Kano J.Uno B.Konse T. Bull. Chem. Soc. Jpn. 1987, 60: 3865 - 24
Steenken S.Jovanovic SV. J. Am. Chem. Soc. 1997, 119: 617
References
The crude product was purified by column chromatography on silica gel (hexane-toluene = 1:1) yielding a yellow solid (25%). R f = 0.23 (hexane-toluene = 1:1). 1H NMR (500 MHz, CDCl3): δ = 9.08 (m, 2 H), 8.67 (m, 1 H), 8.44 (d, J = 9.0 Hz, 1 H), 8.35 (d, J = 9.0 Hz, 1 H), 8.24 (d, J = 7.5 Hz, 1 H), 8.10 (d, J = 7.5 Hz, 1 H), 7.97 (m, 2 H), 7.81 (m, 2 H), 1.66 (s, 12 H). 13C NMR (125 MHz, CDCl3): δ = 135.17, 134.82, 131.72, 131.58, 129.48, 129.14, 128.80, 128.65, 128.49, 128.16, 126.55, 126.36, 126.11, 126.0, 125.76, 125.42, 123.62, 123.57, 122.59, 85.03, 25.68. HRMS (EI): m/z calcd for C26H23O2B: 378.17911; found: 378.17896.
18The crude product was purified by column chromatography on silica gel (CH2Cl2-acetone = 4:1, then EtOAc-MeOH = 10:1, then EtOAc-MeOH-H2O = 10:1:0.5) yielding a yellow solid (25%). Analytical HPLC (RP-18 column, gradient A:B = 10:90 to 90:10 over 45 min, A = MeCN, B = H2O) was performed to ensure the purity of 1 of >99.5%. R f = 0.40 (EtOAc-MeOH-H2O = 10:1:0.5). NMR signals were assigned based on 2D NMR measurements (HSQC). 1H NMR (500 MHz, DMSO-d 6): δ = 10.90 (br s, 1 H, NH), 9.34 (m, 2 H, H-10, H-11), 8.57 (d, J = 9.2 Hz, 1 H, H-12), 8.45 (d, J = 7.9 Hz, 1 H, H-1), 8.27 (d, J = 7.4 Hz, 1 H, H-3), 8.08 (m, 2 H, H-2, H-4), 7.91 (m, 1 H, H-9), 7.83 (m, 1.5 H, H-8, H-7), 7.61 (d, J = 8.3 Hz, 0.5 H, H-7), 7.55 (d, J = 9.5 Hz, 0.5 H, H-5), 7.40 (d, J = 9.5 Hz, 0.5 H, H-5), 6.53 (br s, 2 H, NH2), 5.47 (m, 1 H, H-1′), 4.36 (m, 1 H, H-3′), 3.76 (m, 1 H, H-4′), 3.58 (m, 1 H, H-5′), 3.46 (m, 1 H, H-5′), 2.81 (m, 1 H, H-2′), 1.70 (m, 1 H, H-2′). 13C NMR (125 MHz, DMSO-d 6): δ = 157.49, 156.30, 154.27, 132.58 (C-7), 130.02 (C-12), 130.33 and 127.83 (C-4 and C-2), 128.05, 127.75 (C-1), 127.08 (C-3), 127.66 (C-9), 126.05, 125.93 (C-5), 123.43 and 124.94 (C-10 and C-11), 121.35, 88.80 (C-4′), 85.97 (C-1′), 71.93 (C-3′), 62.94 (C-5′), 37.39 (C-2′). HRMS (ESI/FTICR): m/z calcd for C30H23N5O4 [M+ + H]: 518.18228; found: 518.18207.
19Steady-state fluorescence spectroscopy was performed at r.t. on a Spex Fluoromax III spectrometer. The emission spectra are corrected according to detection system variation with wavelength. UV/Vis absorbance spectroscopy was performed at r.t. on a Varian Cary 100 photometer. Dry solvents (Fluka puriss. over molecular sieve, H2O <0.01%) were used for the measurements.