Semin Liver Dis 2005; 25(2): 212-225
DOI: 10.1055/s-2005-871200
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Hepatocellular Carcinoma: Molecular Pathways and New Therapeutic Targets

Lewis R. Roberts1 , 3 , Gregory J. Gores2 , 3
  • 1Assistant Professor of Medicine and Consultant, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
  • 2Reuben R. Eisenberg Professor of Medicine and Consultant, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
  • 3Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota
Further Information

Publication History

Publication Date:
25 May 2005 (online)

ABSTRACT

Hepatocellular carcinoma is often diagnosed at an advanced stage, when it is not amenable to curative therapies. There is no effective chemotherapy. Advances in cancer biology suggest that a limited number of pathways are responsible for initiating and maintaining dysregulated cell proliferation, which is the major cellular alteration responsible for the cancer phenotype. New treatments in development target several of these critical pathways, including agents targeting the receptor tyrosine kinase pathways, the Wnt/β-catenin signaling pathway, the ubiquitin/proteasome degradation pathway, the epigenetic DNA methylation and histone deacetylation pathways, the PI3 kinase/AKT/mTOR pathway, angiogenic pathways, and telomerase. Several of these approaches hold significant promise for improving the long-term outcome of patients with advanced hepatocellular carcinoma. Because of the high prevalence of liver cirrhosis in hepatocellular carcinoma patients, these approaches must be coupled with new strategies for halting or reversing the progression of chronic liver disease.

REFERENCES

  • 1 Ferlay J, Bray F, Pisani P et al.. GLOBOCAN 2002 Cancer Incidence, Mortality and Prevalence Worldwide. IARC CancerBase. No. 5 Version 2.00 Lyon, France; IARC Press 2004
  • 2 El-Serag H B. Hepatocellular carcinoma: recent trends in the United States.  Gastroenterology. 2004;  127 S27-S34
  • 3 Bruix J, Boix L, Sala M et al.. Focus on hepatocellular carcinoma.  Cancer Cell. 2004;  5 215-219
  • 4 Llovet J M, Burroughs A, Bruix J. Hepatocellular carcinoma.  Lancet. 2003;  362 1907-1917
  • 5 Ishikawa T, Ichida T, Yokoyama J et al.. Complete disappearance of pulmonary metastases in a case of hepatocellular carcinoma treated with docetaxel-based systemic chemotherapy.  J Gastroenterol Hepatol. 2004;  19 1423-1426
  • 6 Lu Y S, Hsu C, Li C C et al.. Phase II study of combination doxorubicin, interferon-alpha, and high-dose tamoxifen treatment for advanced hepatocellular carcinoma.  Hepatogastroenterology. 2004;  51 815-819
  • 7 Schwartz J D, Beutler A S. Therapy for unresectable hepatocellular carcinoma: review of the randomized clinical trials-II: systemic and local non-embolization-based therapies in unresectable and advanced hepatocellular carcinoma.  Anticancer Drugs. 2004;  15 439-452
  • 8 Ikeda M, Okusaka T, Ueno H et al.. A phase II trial of continuous infusion of 5-fluorouracil, mitoxantrone, and cisplatin for metastatic hepatocellular carcinoma.  Cancer. 2005;  103 756-762
  • 9 Lee J, Park J O, Kim W S et al.. Phase II study of doxorubicin and cisplatin in patients with metastatic hepatocellular carcinoma.  Cancer Chemother Pharmacol. 2004;  54 385-390
  • 10 Valle J W, Dangoor A, Beech J et al.. Treatment of inoperable hepatocellular carcinoma with pegylated liposomal doxorubicin (PLD): results of a phase II study.  Br J Cancer. 2005;  92 628-630
  • 11 Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma.  Nat Genet. 2002;  31 339-346
  • 12 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 13 Green D R, Evan G I. A matter of life and death.  Cancer Cell. 2002;  1 19-30
  • 14 Lowe S W, Cepero E, Evan G. Intrinsic tumour suppression.  Nature. 2004;  432 307-315
  • 15 Schmitt C A, Fridman J S, Yang M et al.. Dissecting p53 tumor suppressor functions in vivo.  Cancer Cell. 2002;  1 289-298
  • 16 Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis.  Oncogene. 2003;  22 6524-6536
  • 17 Lewis B C, Klimstra D S, Socci N D et al.. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma.  Mol Cell Biol. 2005;  25 1228-1237
  • 18 Kitamura Y, Hirotab S. Kit as a human oncogenic tyrosine kinase.  Cell Mol Life Sci. 2004;  61 2924-2931
  • 19 Jones A V, Cross N C. Oncogenic derivatives of platelet-derived growth factor receptors.  Cell Mol Life Sci. 2004;  61 2912-2923
  • 20 Lynch T J, Bell D W, Sordella R et al.. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.  N Engl J Med. 2004;  350 2129-2139
  • 21 Paez J G, Janne P A, Lee J C et al.. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy.  Science. 2004;  304 1497-1500
  • 22 Ramadori G, Fuzesi L, Grabbe E et al.. Successful treatment of hepatocellular carcinoma with the tyrosine kinase inhibitor imatinib in a patient with liver cirrhosis.  Anticancer Drugs. 2004;  15 405-409
  • 23 Shachaf C M, Kopelman A M, Arvanitis C et al.. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.  Nature. 2004;  431 1112-1117
  • 24 Al-Hajj M, Clarke M F. Self-renewal and solid tumor stem cells.  Oncogene. 2004;  23 7274-7282
  • 25 Pikarsky E, Porat R M, Stein I et al.. NF-kappaB functions as a tumour promoter in inflammation-associated cancer.  Nature. 2004;  431 461-466
  • 26 Strumberg D, Richly H, Hilger R A et al.. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors.  J Clin Oncol. 2005;  23 965-972
  • 27 Hopfner M, Sutter A P, Huether A et al.. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma.  J Hepatol. 2004;  41 1008-1016
  • 28 Lee T K, Man K, Ho J W et al.. Significance of the Rac signaling pathway in HCC cell motility: implications for a new therapeutic target.  Carcinogenesis. 2005;  26 681-687
  • 29 Adjei A A. Pemetrexed (ALIMTA), a novel multitargeted antineoplastic agent.  Clin Cancer Res. 2004;  10 4276s-4280s
  • 30 Adjei A A, Dy G K, Erlichman C et al.. A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer.  Clin Cancer Res. 2003;  9 115-123
  • 31 Giles R H, van Es J H, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer.  Biochim Biophys Acta. 2003;  1653 1-24
  • 32 Colnot S, Decaens T, Niwa-Kawakita M et al.. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas.  Proc Natl Acad Sci USA. 2004;  101 17216-17221
  • 33 Suksaweang S, Lin C M, Jiang T X et al.. Morphogenesis of chicken liver: identification of localized growth zones and the role of beta-catenin/Wnt in size regulation.  Dev Biol. 2004;  266 109-122
  • 34 Willert K, Brown J D, Danenberg E et al.. Wnt proteins are lipid-modified and can act as stem cell growth factors.  Nature. 2003;  423 448-452
  • 35 Lepourcelet M, Chen Y N, France D S et al.. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex.  Cancer Cell. 2004;  5 91-102
  • 36 Emami K H, Nguyen C, Ma H et al.. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected].  Proc Natl Acad Sci USA. 2004;  101 12682-12687
  • 37 You L, He B, Xu Z et al.. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth.  Cancer Res. 2004;  64 5385-5389
  • 38 You L, He B, Xu Z et al.. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells.  Oncogene. 2004;  23 6170-6174
  • 39 Dihlmann S, von Knebel Doeberitz M. Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics.  Int J Cancer. 2005;  113 515-524
  • 40 Hawcroft G, D'Amico M, Albanese C et al.. Indomethacin induces differential expression of beta-catenin, gamma-catenin and T-cell factor target genes in human colorectal cancer cells.  Carcinogenesis. 2002;  23 107-114
  • 41 Dihlmann S, Klein S, Doeberitz Mv M K. Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated beta-catenin.  Mol Cancer Ther. 2003;  2 509-516
  • 42 Boon E M, Keller J J, Wormhoudt T A et al.. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines.  Br J Cancer. 2004;  90 224-229
  • 43 Williams J L, Nath N, Chen J et al.. Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention.  Cancer Res. 2003;  63 7613-7618
  • 44 Yamada Y, Yoshimi N, Hirose Y et al.. Suppression of occurrence and advancement of beta-catenin-accumulated crypts, possible premalignant lesions of colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib.  Jpn J Cancer Res. 2001;  92 617-623
  • 45 Zhou L, An N, Haydon R C et al.. Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity.  Cancer Lett. 2003;  193 161-170
  • 46 Hanai J, Gloy J, Karumanchi S A et al.. Endostatin is a potential inhibitor of Wnt signaling.  J Cell Biol. 2002;  158 529-539
  • 47 Burger A M, Seth A K. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications.  Eur J Cancer. 2004;  40 2217-2229
  • 48 Yang Y, Li C C, Weissman A M. Regulating the p53 system through ubiquitination.  Oncogene. 2004;  23 2096-2106
  • 49 Dong Y, Hakimi M A, Chen X et al.. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair.  Mol Cell. 2003;  12 1087-1099
  • 50 Zhang Y, Chang C, Gehling D J et al.. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.  Proc Natl Acad Sci USA. 2001;  98 974-979
  • 51 Wang F, Denison S, Lai J P et al.. Parkin gene alterations in hepatocellular carcinoma.  Genes Chromosomes Cancer. 2004;  40 85-96
  • 52 Vassilev L T, Vu B T, Graves B et al.. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.  Science. 2004;  303 844-848
  • 53 Kouraklis G, Theocharis S. Histone deacetylase inhibitors and anticancer therapy.  Curr Med Chem Anti-Canc Agents. 2002;  2 477-484
  • 54 Monneret C. Histone deacetylase inhibitors.  Eur J Med Chem. 2005;  40 1-13
  • 55 Yamamoto H, Fujimoto J, Okamoto E et al.. Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo.  Int J Cancer. 1998;  76 897-902
  • 56 Herold C, Ganslmayer M, Ocker M et al.. The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells.  J Hepatol. 2002;  36 233-240
  • 57 Yamashita Y, Shimada M, Harimoto N et al.. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells.  Int J Cancer. 2003;  103 572-576
  • 58 Saito H, Ebinuma H, Takahashi M et al.. Loss of butyrate-induced apoptosis in human hepatoma cell lines HCC-M and HCC-T having substantial Bcl-2 expression.  Hepatology. 1998;  27 1233-1240
  • 59 Wakabayashi K, Saito H, Ebinuma H et al.. Bcl-2 related proteins are dramatically induced at the early stage of differentiation in human liver cancer cells by a histone deacetylase inhibitor projecting an anti-apoptotic role during this period.  Oncol Rep. 2000;  7 285-288
  • 60 Han J W, Ahn S H, Park S H et al.. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin.  Cancer Res. 2000;  60 6068-6074
  • 61 Cheong J W, Chong S Y, Kim J Y et al.. Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells.  Clin Cancer Res. 2003;  9 5018-5027
  • 62 Kim J S, Jeung H K, Cheong J W et al.. Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades.  Br J Haematol. 2004;  124 166-178
  • 63 Kwon S H, Ahn S H, Kim Y K et al.. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells.  J Biol Chem. 2002;  277 2073-2080
  • 64 Zhu W G, Otterson G A. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells.  Curr Med Chem Anti-Canc Agents. 2003;  3 187-199
  • 65 Chan S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer.  Br J Cancer. 2004;  91 1420-1424
  • 66 Lane .The Rapamycin derivative RAD001 in oncology: what is the endpoint? In Program and Proceedings of the AACR-NCI-EORTC International Conference. Molecular Targets and Cancer Therapeutics, Hynes Center, Boston, Nov 17-21. 2003
  • 67 Mita M M, Rowinski E K, Goldston M L et al.. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of AP23573 an mTOR inhibitor administered IV daily x 5 every other week in patients with refractory or advanced malignancies. Meeting Proceedings American Society of Clinical Oncology, Vol 23. 2004
  • 68 Yu K, Toral-Barza L, Discafani C et al.. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer.  Endocr Relat Cancer. 2001;  8 249-258
  • 69 Horie Y, Suzuki A, Kataoka E et al.. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas.  J Clin Invest. 2004;  113 1774-1783
  • 70 Sahin F, Kannangai R, Adegbola O et al.. mTOR and P70 S6 kinase expression in primary liver neoplasms.  Clin Cancer Res. 2004;  10 8421-8425
  • 71 Kim K W, Bae S K, Lee O H et al.. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma.  Cancer Res. 1998;  58 348-351
  • 72 Maxwell P H, Dachs G U, Gleadle J M et al.. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth.  Proc Natl Acad Sci USA. 1997;  94 8104-8109
  • 73 Giannis M A. Inhibitors of angiogenesis and cancer-related receptor tyrosine kinases.  Curr Opin Chem Biol. 2004;  8 432-441
  • 74 Musso O, Rehn M, Theret N et al.. Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen XVIII in human hepatocellular carcinomas.  Cancer Res. 2001;  61 45-49
  • 75 Tsuboi S, Nouso K, Tomono Y et al.. Anti-endostatin monoclonal antibody enhances growth of human hepatocellular carcinoma cells by inhibiting activity of endostatin secreted by the transplanted cells in nude mice.  Int J Oncol. 2004;  25 1267-1271
  • 76 Li G, Sham J, Yang J et al.. Potent antitumor efficacy of an E1B 55kDa-deficient adenovirus carrying murine endostatin in hepatocellular carcinoma.  Int J Cancer. 2005;  113 640-648
  • 77 Gratton J P, Lin M I, Yu J et al.. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice.  Cancer Cell. 2003;  4 31-39
  • 78 Patt Y Z, Hassan M M, Lozano R D et al.. Durable clinical response of refractory hepatocellular carcinoma to orally administered thalidomide.  Am J Clin Oncol. 2000;  23 319-321
  • 79 Patt Y Z, Hassan M M, Lozano R D et al.. Thalidomide in the treatment of patients with hepatocellular carcinoma.  Cancer. 2005;  103 749-755
  • 80 Miura N, Horikawa I, Nishimoto A et al.. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis.  Cancer Genet Cytogenet. 1997;  93 56-62
  • 81 Stewart S A, Weinberg R A. Telomerase and human tumorigenesis.  Semin Cancer Biol. 2000;  10 399-406
  • 82 Cerni C. Telomeres, telomerase, and myc. An update.  Mutat Res. 2000;  462 31-47
  • 83 Kojima H, Yokosuka O, Imazeki F et al.. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease.  Gastroenterology. 1997;  112 493-500
  • 84 Nagao K, Tomimatsu M, Endo H et al.. Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma.  J Gastroenterol. 1999;  34 83-87
  • 85 Natarajan S, Chen Z, Wancewicz E V et al.. Telomerase reverse transcriptase (hTERT) mRNA and telomerase RNA (hTR) as targets for downregulation of telomerase activity.  Oligonucleotides. 2004;  14 263-273
  • 86 Seimiya H, Muramatsu Y, Ohishi T et al.. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics.  Cancer Cell. 2005;  7 25-37
  • 87 Moriyama M, Hoshida Y, Otsuka M et al.. Relevance network between chemosensitivity and transcriptome in human hepatoma cells.  Mol Cancer Ther. 2003;  2 199-205
  • 88 Kurokawa Y, Matoba R, Nagano H et al.. Molecular prediction of response to 5-fluorouracil and interferon-alpha combination chemotherapy in advanced hepatocellular carcinoma.  Clin Cancer Res. 2004;  10 6029-6038

Gregory J GoresM.D. 

Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine

200 First Street SW, Rochester, MN 55902

Email: Gores.Gregory@mayo.edu