Horm Metab Res 2005; 37(7): 433-437
DOI: 10.1055/s-2005-870235
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Ceramides, Sphinganine, Sphingosine and Acid Sphingomyelinases in the Human Umbilical Cord Blood

P.  Knapp1 , A.  Dobrzyń2 , J.  Górski2
  • 1Department of Gynecology, Medical University of Białystok, Białystok, Poland
  • 2Department of Physiology, Medical University of Białystok, Białystok, Poland
Further Information

Publication History

Received 22 January 2004

Accepted after revision 13 September 2004

Publication Date:
21 July 2005 (online)

Abstract

Ceramides, sphingosine, sphinganine, as well as Zn++-dependent and Zn++-independent acid sphingomyelinase are present in the plasma of adults. The aim of the present study was to examine the concentrations of these compounds and activities of both enzymes in the umbilical cord blood in humans. Twenty-two women with uncomplicated term pregnancy volunteered for the study. Blood was taken from the umbilical cord artery and from the antecubital vein of the mother immediately after delivery. Free ceramides were isolated by thin layer chromatography, and their fatty acids were identified and quantified by gas-liquid chromatography. Free sphingosine and sphinganine concentrations were determined using high-performance liquid chromatography. Acid Zn++-dependent and Zn++-independent sphingomyelinase activity was measured using sphingomyelin [choline-methyl-14C] as a substrate. We found that the compounds examined are present in the umbilical cord blood. The total fatty acid-containing ceramide concentrations in fetal blood were lower than in mother’s blood. The mean sphingosine and sphinganine concentrations in the fetal and maternal serum were similar. The examined enzymes were present in the fetal serum, and their mean activity did not differ from that in the mother. In conclusion, we have shown the presence of ceramides, sphingosine and sphinganine and both isoforms of acid sphingomyelinase in the human fetal cord blood. They are most likely the product of the fetus itself.

References

  • 1 Hannun Y A, Luberto C. Ceramide in the eucariotic stress response.  Trends Cell Biol. 2000;  10 73-80
  • 2 Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling.  Biochim Biophys Acta. 2000;  1484 63-99
  • 3 Górska M, Dobrzyń A, Zendzian-Piotrowska M, Namiot Z. Concentration and composition of free ceramides in human plasma.  Horm Metab Res. 2002;  34 466-468
  • 4 Mathur S, Constable P D, Eppley R M, Tumbleson M E, Smith G W, Tranquilli W J, Morin D E, Haschek W M. Fumonisin B1 increases serum sphinganine concentration but does not alter serum sphingosine concentration or induce cardiovascular changes in milk-fed calves.  Toxicol Sci. 2001;  60 379-384
  • 5 Ribar S, Mesaric M, Bauman M. High-performance liquid chromatographic determination of sphinganine and sphingosine in serum and urine of subjects from endemic nephropathy area in Croatia. J.  Chromatogr B. 2001;  754 511-519
  • 6 Samuelsson K. Identification and quantitative determination of ceramides in human plasma.  Scand J Clin Lab Invest. 1971;  27 371-380
  • 7 Shephard G S, Van der Westhuizen L. Liquid chromatographic determination of the sphinganine/sphingosine ratio in serum. J.  Chromatogr B. 1998;  710 219-222
  • 8 Spence M W, Byers D M, Palmer F BStC, Cook H W. A new Zn2+-stimulated sphingomyelinase in fetal bovine serum.  J Biol Chem. 1989;  264 5358-5363
  • 9 Takahashi T, Abe T, Sato T, Miura K, Takahashi I, Yano M, Watanabe A, Imashuku S, Takada G J. Elevated sphingomyelinase and hypercytokinemia in hemophagocytic lymphohistiocytosis.  J Ped Hematol/Oncol. 2002;  24 401-404
  • 10 Tabas I. Secretory sphingomyelinase.  Chem Phys Lipids. 1999;  102 123-130
  • 11 Takahashi I, Takahashi T, Abe T, Watanabe A, Takada G J. Distribution of acid sphingomyelinase in human body fluids.  Tohoku J Exp Med. 2000;  192 61-66
  • 12 Folch J, Lees M, Stanley G HS. A simple method for the isolation and purification of total lipids from animal tissues.  J Biol Chem. 1957;  226 497-509
  • 13 Dobrzyń A, Górski J. Ceramides and sphingomyelins in skeletal muscles of the rat: content and composition. Effect of prolonged exercise.  Am J Physiol Endorinol Metab. 2002;  281 E277-E285
  • 14 Morrison W R, Smith L M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol.  J Lipid Res. 1964;  5 600-608
  • 15 Merril A H Jr, Wang E, Mullins R E, Jamison W CL, Nimkar S, Liotta D C. Quantitation of free sphingosine in liver by high-performance liquid chromatography.  Anal Chem. 1988;  171 373-381
  • 16 Sabbadini R A, McNutt W, Jenkins G, Betto R, Saliiati G. Sphingosine is endogenous to cardiac and skeletal muscle.  Biochem Biophys Res Commun. 1993;  193 752- 758
  • 17 Schissel S L, Schuman E H, Williams K J, Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene.  J Biol Chem. 1996;  271 18431-18436
  • 18 Lightle S, Tosheva R, Lee A, Queen-Baker J, Boyanovsky B, Shedlofsky S, Nikolova-Karakashian M. Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine-palmitoyl transferase.  Arch Biochem Biophys. 2003;  419 120-128
  • 19 Memon R A, Holleran W M, Uchida Y, Moser A H, Ichikawa S, Hirabayashi Y, Grunfeld C, Feingold K R. Regulation of glycosphingolipid metabolism in liver during the acute phase response.  J Biol Chem. 1999;  274 19 707-19 713
  • 20 Merril A H Jr, Lingrell S, Wang E, Nikolana-Karakashinian M, Vales T R, Vance D E. Sphingolipid biosynthesis de novo by rat hepatocytes in culture.  J Biol Chem. 1995;  270 13834-13841

Dr. J. Górski

Department of Physiology, Medical University of Białystok

15-089 Białystok · Poland ·

Phone: +48 (85) 748 55 85

Fax: +48 (85) 748 55 86

Email: gorski@amb.edu.pl