Subscribe to RSS
DOI: 10.1055/s-2005-868493
Tishchenko Reaction Using an Iridium-Ligand Bifunctional Catalyst
Publication History
Publication Date:
25 April 2005 (online)
Abstract
Tishchenko reaction of aldehydes in the presence of an amino alcohol-based Ir bifunctional catalyst was developed. The reaction proceeds with 1 mol% of the catalyst and 20-30 mol% of K2CO3 in acetonitrile at room temperature to give the corresponding dimeric esters in good yield.
Key words
aldehydes - esters - hydrogen transfer - iridium catalyst - Tishchenko reaction
-
1a
Tischtschenko W. Chem. Zentralbl. 1906, 77: 1309 -
1b
Larock RC. Comprehensive Organic Transformations VCH Publishers, Inc.; New York: 1989. p.840 -
1c For a recent review:
Törmäkangas OP.Koskinen AMP. Recent Res. Dev. Org. Chem. 2001, 5: 225 - 2 For recent examples of Tishchenko-related reactions, see:
Gnanadesikan V.Horiuchi Y.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2004, 126: 7782 ; and references cited therein - 3
Stapp PR. J. Org. Chem. 1973, 38: 1433 - 4
Yamashita M.Watanabe Y.Mitsudo T.-a.Takegami Y. Bull. Chem. Soc. Jpn. 1976, 49: 3597 -
5a
Ito T.Horino H.Koshiro Y.Yamamoto A. Bull. Chem. Soc. Jpn. 1982, 55: 504 -
5b
Menashe N.Shvo Y. Organometallics 1991, 10: 3885 - 6
Morita K.Nishiyama Y.Ishii Y. Organometallics 1993, 12: 3748 -
7a
Onozawa S.-y.Sakakura T.Tanaka M.Shiro M. Tetrahedron 1996, 52: 4291 -
7b
Berberich H.Roesky PW. Angew. Chem. Int. Ed. 1998, 37: 1569 -
7c
Bürgstein MR.Berberich H.Roesky PW. Chem.-Eur. J. 2001, 7: 3078 -
8a
Bernard KA.Atwood JD. Organometallics 1988, 7: 235 -
8b
Bernard KA.Atwood JD. Organometallics 1989, 8: 795 - 9
Barrio P.Esteruelas MA.Oñate E. Organometallics 2004, 23: 1340 -
10a
Ooi T.Miura T.Takaya K.Maruoka K. Tetrahedron Lett. 1999, 40: 7695 -
10b
Simpura I.Nevalainen V. Tetrahedron 2001, 57: 9867 -
10c
Ooi T.Ohmatsu K.Sasaki K.Miura T.Maruoka K. Tetrahedron Lett. 2003, 44: 3191 -
11a
Suzuki T.Morita K.Tsuchida M.Hiroi K. Org. Lett. 2002, 4: 2361 -
11b
Suzuki T.Morita K.Matsuo Y.Hiroi K. Tetrahedron Lett. 2003, 44: 2003 -
11c
Suzuki T.Morita K.Tsuchida M.Hiroi K. J. Org. Chem. 2003, 68: 1601 - For a related synthesis of dimeric esters using oxidative dimerization of primary alcohol, see:
-
11d
Suzuki T.Matsuo T.Watanabe K.Katoh T. Synlett 2005, in press - Recent examples of hydrogen transfer reaction using Cp*Ir complexes, see:
-
12a
Mashima K.Abe T.Tani K. Chem. Lett. 1998, 1199 -
12b
Murata K.Ikariya T.Noyori R. J. Org. Chem. 1999, 64: 2186 -
12c
Ogo S.Makihara N.Watanabe Y. Organometallics 1999, 18: 5470 -
12d
Ogo S.Makihara N.Kaneko Y.Watanabe Y. Organometallics 2001, 20: 4903 -
12e
Fujita K.Furukawa S.Yamaguchi R. J. Organomet. Chem. 2002, 649: 289 -
12f
Fujita K.Yamamoto K.Yamaguchi R. Org. Lett. 2002, 4: 2691 -
12g
Abura T.Ogo S.Watanabe Y.Fukuzumi S. J. Am. Chem. Soc. 2003, 125: 4149 -
12h
Fujita K.Li Z.Ozeki N.Yamaguchi R. Tetrahedron Lett. 2003, 44: 2687 -
12i
Fujita K.Kitatsuji C.Furukawa S.Yamaguchi R. Tetrahedron Lett. 2004, 45: 3215 -
12j
Fujita K.Fujii T.Yamaguchi R. Org. Lett. 2004, 6: 3525 -
12k
Hanasaka F.Fujita K.Yamaguchi R. Organometallics 2004, 23: 1490 - 15 Although the role of the K2CO3 is not clear at present, it might increase the nucleophilicity of the reduced alcohol 5 to the corresponding aldehyde for the formation of the hemiacetal 6. For the mechanistic study of acid- and base-catalyzed formation of the hemiacetal, see:
Sorensen PE.Jencks WP. J. Am. Chem. Soc. 1987, 109: 4675
References
Although Cs2CO3 also showed similar reactivity (ca. 90%), the use of other bases, such as Na2CO3, KHCO3, KOAc, and Et3N resulted in lower reactivity (<10% yield). t-BuOK afforded the aldol condensation product without forming the dimeric ester.
14Although TONs were not optimized at the moment, they were roughly calculated to be in range between 43 and 49 for most substrates.
16In a control experiment, no reaction took place without Ir complex (in the presence of K2CO3).
17In most cases, a small amount of alcohol remained even after the aldehyde was completely consumed.