Abstract
In pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.
Key words
Crown allometry - growing space efficiency - Norway spruce - European beech - mixed stand - competition index - scaling from tree to stand level
References
1 Assmann E.. Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. München, Bonn, Wien; BLV Verlagsgesellschaft (1961): 490
2
Bachmann M..
Indizes zur Erfassung der Konkurrenz von Einzelbäumen. Methodische Untersuchung in Bergmischwäldern.
Forstliche Forschungsberichte München.
(1998);
171
261
3 Bertalanffy v. L.. Theoretische Biologie, Bd. II. Bern; Verlag A. Francke AG (1951): 418
4
Biging S. G., Dobbertin M..
A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees.
Forest Science.
(1992);
38
695-720
5
Bolte A., Rahmann T., Kuhr M., Pogoda P., Murach D., v. Gadow K..
Relationship between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.).
Plant and Soil.
(2004);
264
1-11
6 Bortz J., Lienert G. A., Boehnke K.. Verteilungsfreie Methoden in der Biostatistik. Berlin, Heidelberg, New York, London; Springer-Verlag (1990): 939
7 Dhôte J.-F.. Implication of forest diversity for the resistance to strong winds. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2004): 399p
8
Enquist B. J., Niklas K. J..
Invariant scaling relations across tree-dominated communities.
Nature.
(2001);
410
655-660
9
Grote R., Schuck J., Block J., Pretzsch H..
Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen.
Forstwissenschaftliches Centralblatt.
(2003);
122
287-301
10 Harper J. L.. Population Biology of Plants. London; Academic Press (1977): 892
11
Kennel R..
Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand.
Allgemeine Forst- und Jagdzeitung.
(1965);
136
149-161
173-189
13
Kölling Ch., Walentowski H., Borchert H..
Die Buche in Mitteleuropa.
AFZ - Der Wald.
(2005);
in press
12 Körner Ch.. An introduction to the functional diversity of temporate forest trees. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2005): 13-37
14
Kozlowski J., Konarzewski M..
Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?.
Functional Ecology.
(2004);
18
283-289
15
Leuschner C..
Mechanismen der Konkurrenzüberlegenheit der Rotbuche.
Berichte der Reinhold Tüxen-Gesellschaft.
(1998);
10
5-18
16 Lüpke B., Spellmann H.. Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. Olsthoorn, A. F. M., Bartelink, H. H., Gardiner, J. J., Pretzsch, H., Hekhuis. H. J., and Franc, A., eds. Management of Mixed-Species Forest: Silviculture and Economics, IBN Scientific Contributions. (1999): 245-267
17
Matyssek R., Schnyder H., Elstner E.-F., Munch J.-C., Pretzsch H., Sandermann H..
Growth and parasite defence in plants; the balance between resource sequestration and retention.
Plant Biology.
(2002);
4
133-136
18
Mayer R..
Kronengröße und Zuwachsleistung der Traubeneiche auf süddeutschen Standorten.
Allgemeine Forst- und Jagdzeitung.
(1958);
129
105-114
151-163
191-201
19
McMahon T. A., Kronauer R. E..
Tree structure: deducing the principle of mechanical design.
Journal of Theoretical Biology.
(1976);
59
443-466
20
Mielikäinen K..
Koivusekoituksen vaikutus kuusikon rakenteeseeen ja kehitykseen. Effect of an admixture of birch on the structure and development of Norway Spruce Stands.
Communicationes Instituti Forestalis Fenniae.
(1985);
133
1-79
21 Niklas K. J.. Plant Allometry. Chicago; University of Chicago Press (1994): 395
22
Petri H..
Versuch einer standortgerechten, waldbaulichen und wirtschaftlichen Standraumregelung von Buchen-Fichten-Mischbeständen.
Mitteilungen aus der Landesforstverwaltung Rheinland-Pfalz.
(1966);
13
145
23 Pretzsch H.. Modellierung des Waldwachstums. Berlin, Wien; Blackwell (2001): 341
24 Pretzsch H.. Grundlagen der Waldwachstumsforschung. Berlin, Wien; Blackwell (2002): 414
25 Pretzsch H.. Diversity and productivity in forests. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2004): 41-64
26
Pretzsch H..
Species-specific allometric scaling under self-thinning. Evidence from long-tern plots in forest stands.
Oecologia.
(2005 a);
DOI: 10.1007/s00442-005-0126-0
27
Pretzsch H..
Stand density and growth of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots.
European Journal of Forest Research.
(2005 b);
DOI: 10.1007/s10342-005-0068-4
28
Pretzsch H., Kahn M., Grote R..
Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst.
Forstwissenschaftliches Centralblatt.
(1998);
117
241-257
29
Pretzsch H., Seifert St..
Methoden zur Visualisierung des Waldwachstums.
Forstwissenschaftliches Centralblatt.
(2000);
119
100-113
30
Pretzsch H., Biber P..
A re-evaluation of Reineke's rule and Stand Density Index.
Forest Science.
(2005);
51
304-320
31
Reitmayer H., Werner H., Fabian P..
A novel system for spectral analysis of solar radiation within a mixed beech-spruce stand.
Plant Biology.
(2002);
4
228-233
32
Sterba H., Amateis R. L..
Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment.
Canadian Journal of Forest Research.
(1998);
28
1344-1351
33
Stoll P., Weiner J., Muller-Landau H., Müller E., Hara T..
Size symmetry of competition alters biomass-density relationships.
Proceedings of the Royal Society of London, Series B - Biological Sciences.
(2002);
269
2191-2195
34
Webster R., Lorimer C. G..
Comparative growing space efficiency of four tree species in mixed confer-hardwood forests.
Forest Ecology and Management.
(2003);
177
361-377
35
Weller D. E..
A reevaluation of the - 3/2 power rule of plant self-thinning.
Ecological Monographs.
(1987);
57
23-43
36
West G. B., Brown J. H., Enquist B. J..
A general model for the origin of allometric scaling laws in biology.
Science.
(1997);
276
122-126
37
Wiedemann E..
Der gleichaltrige Fichten-Buchen-Mischbestand.
Mitteilungen aus der Forstwirtschaft und Forstwissenschaft.
(1942);
13
1-88
38
Wiedemann E..
Der Vergleich der Massenleistung des Mischbestandes mit dem Reinbestand.
Allgemeine Forst- und Jagdzeitung.
(1943);
119
123-132
39
Zeide B..
Tolerance and self-tolerance of trees.
Forest Ecology and Management.
(1985);
13
149-166
40
Zeide B..
Analysis of the 3/2 power law of self-thinning.
Forest Science.
(1987);
33
517-537
H. Pretzsch
Chair of Forest Yield Science Faculty of Forest Science and Resource Management Technical University of Munich
Am Hochanger 13
85354 Freising-Weihenstephan
Germany
eMail: h.pretzsch@lrz.tum.de
Guest Editor: R. Matyssek