Neuropediatrics 2005; 36(4): 265-269
DOI: 10.1055/s-2005-865863
Short Communication

Georg Thieme Verlag KG Stuttgart · New York

Different Molecular Mechanisms Leading to White Matter Hypomyelination in Infantile Onset Lysosomal Disorders

M. Di Rocco1 , A. Rossi2 , G. Parenti3 , A. E. M. Allegri1 , M. Filocamo4 , A. Pessagno5 , P. Tortori-Donati2 , C. Minetti6 , R. Biancheri6
  • 1Second Unit of Paediatrics, Istituto G. Gaslini, Genova, Italy
  • 2Department of Paediatric Neuroradiology, Istituto G. Gaslini, Genova, Italy
  • 3Department of Paediatrics, Federico II University, Napoli, Italy
  • 4Laboratorio Diagnosi Pre-Postnatale Malattie Metaboliche, Istituto G. Gaslini, Genova, Italy
  • 5Child Neuropsychiatry, Istituto G. Gaslini, Genova, Italy
  • 6Neuromuscular Disease Unit, University of Genova, Istituto G. Gaslini, Genova, Italy
Further Information

Publication History

Received: March 29, 2005

Accepted after Revision: June 26, 2005

Publication Date:
11 August 2005 (online)

Abstract

Hypomyelinating leukoencephalopathies may be related to a primary disturbance in the formation of myelin or may be caused by neuronal, oligodendrocytic or astrocytic dysfunction, leading to a failure of myelination. Abnormal myelination related to a direct metabolic damage on oligodendrocytes has been shown to occur in some animal models of lysosomal storage diseases. To demonstrate that cerebral white matter hypomyelination may occur also in humans affected by early-onset lysosomal storage diseases, we report three cases with infantile-onset lysosomal storage disorders (type 1 GM1 gangliosidosis, globoid cell leukodystrophy or Krabbe's disease, and type A Niemann-Pick disease) showing white matter hypomyelination. Hypomyelinating leukoencephalopathy may therefore represent a feature of lysosomal storage disorders with onset in the first months of life, when the process of myelination is particularly active, indicating that neuronal storage disorders may be primarily responsible for central nervous system hypomyelination.

References

  • 1 Dietrich J, Lacagnina M, Gass D, Richfield E, Mayer-Proschel M, Noble M, Torres C, Proschel C. EIF2B5 mutations compromise GFAP + astrocyte generation in vanishing white matter leukodystrophy.  Nat Med. 2005;  11 277-283
  • 2 Folkerth R D. Abnormalities of developing white matter in lysosomal storage diseases.  J Neuropathol Exp Neurol. 1999;  58 887-902
  • 3 Folkerth R D, Alroy J, Bhan I, Kaye E M. Infantile GM1 gangliosidosis: complete morphology and histochemistry of two autopsy cases, with particular reference to delayed central nervous system myelination.  Pediatr Dev Pathol. 2000;  3 73-86
  • 4 Kaye E M, Alroy J, Raghavan S S, Schwarting G A, Adelman L S, Runge V, Gelblum D, Thalhammer J G, Zuniga G. Dysmyelinogenesis in animal model of GM1 gangliosidosis.  Pediatr Neurol. 1992;  8 255-261
  • 5 Percy A K, Odrezin G T, Knowles P D, Rouah E, Armstrong D D. Globoid cell leukodystrophy: comparison of neuropathology with magnetic resonance imaging.  Acta Neuropathol (Berl). 1994;  88 26-32
  • 6 Rodriguez-Lafrasse C, Vanier M T. Sphingosylphosphorylcholine in Niemann-Pick disease brain: accumulation in type A but not in type B.  Neurochem Res. 1999;  24 199-205
  • 7 Suzuki K, Taniike M. Murine model of genetic demyelinating disease: the twitcher mouse.  Microsc Res Tech. 1995;  32 204-214
  • 8 van der Knaap M S, Breiter S N, Naidu S, Hart A A, Valk J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach.  Radiology. 1999;  213 121-133
  • 9 van der Knaap M S. Magnetic resonance in childhood white matter disorders.  Dev Med Child Neurol. 2001;  43 705-712
  • 10 van der Voorn J P, Kamphorst W, van der Knaap M S, Powers J M. The leukoencephalopathy of infantile GM1 gangliosidosis: oligodendrocytic loss and axonal dysfunction.  Acta Neuropathol (Berl). 2004;  107 539-545

MD Roberta Biancheri

Neuromuscular Disease Unit
Istituto G. Gaslini

Largo G. Gaslini, 5

16147 Genova

Italy

Email: roberta@biancheri.com

    >