Int J Sports Med 2006; 27(5): 351-358
DOI: 10.1055/s-2005-865742
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Bone Mineral Content and Density of Tunisian Male Rugby Players: Differences Between Forwards and Backs

M. Elloumi1 , D. Courteix2 , S. Sellami3 , Z. Tabka4 , G. Lac1
  • 1Laboratoire de Physiologie de la Performance Motrice, Université Blaise Pascal, Bat Biologie B, Les Cézeaux, Aubière, France
  • 2Laboratoire «Architecture du Tissu Osseux et Exercice Physique», CHR Orléans & Université Orléans, France
  • 3Service Rhumatologie, Unité d'ostéodensitometrie, Hôpital La Rabta Tunis, Tunisie
  • 4Laboratoire de Physiologie et des Explorations Fonctionnelles, Faculté de Médecine Ibn Eljazzar, Sousse, Tunisie
Further Information

Publication History

Accepted after revision: April 15, 2005

Publication Date:
15 September 2005 (online)

Abstract

The purpose of this study was to examine the effects of long-term rugby participation on bone mineral content (BMC) and density (BMD) of male rugby players and to determine if the diverse stimuli elicited by the actions of forwards and backs affect their skeleton differently. Dual energy X-ray absorptiometry (DXA) scans were obtained from 20 male rugby players (10 Forwards and 10 Backs) who actively participated in rugby for the past 13 yr, and from 29 age matched non active subjects of the same ethnic origin. Both groups (rugby players and controls) had comparable age (23.6 ± 3.7 yr vs. 25.6 ± 3.4 yr), height (178.1 ± 4.0 cm vs. 178.3 ± 6.0 cm), and body fat percentage (14.2 ± 4.4 vs. 16.5 ± 5.1). Rugby players showed greater total body mass, and greater total lean and fat body masses than control subjects (p < 0.01). Whole spine BMC and BMD were 52 % and 15 % higher, respectively, in the rugby players than in the control subjects (p < 0.001). Furthermore, rugby players displayed higher skeletal BMC (40 %, 37 % and 58 % for legs, arms and pelvis, respectively) and BMD (16 %, 21 % and 17 %, respectively) than controls. Within the rugby group, forwards were taller, heavier and had greater body fat percentage, and greater total lean and fat body masses than backs (p < 0.05 to p < 0.001). Likewise, BMC, BMD and bone area for the whole body and at specific sites such as arms, spine and legs were also greater in the forwards (p < 0.05 to p < 0.001). Long-term rugby participation, starting at pubertal age, is associated with markedly increased BMC, BMD and bone size at all skeletal sites, except at the head. The musculo-skeletal adaptations, greater in forwards than in backs, could mimic training responses and therefore explain the bone features, localized in specific stressed regions.

References

  • 1 Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A. Effects of different sports on bone density and muscle mass in highly trained athletes.  Med Sci Sports Exerc. 2001;  33 507-511
  • 2 Bennell K L, Malcolm S A, Khan K M, Thomas S A, Reid S J, Brukner P D, Ebeling P R, Wark J D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study.  Bone. 1997;  20 477-484
  • 3 Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study.  J Bone Miner Res. 1998;  13 1814-1821
  • 4 Calbet J A, Moysi J S, Dorado C, Rodriguez L P. Bone mineral content and density in professional tennis players.  Calcif Tissue Int. 1998;  62 491-496
  • 5 Calbet J A, Diaz Herrera P, Rodriguez L P. High bone mineral density in male elite professional volleyball players.  Osteoporos Int. 1999;  10 468-474
  • 6 Calbet J A, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez L P. High femoral bone mineral content and density in male football (soccer) players.  Med Sci Sports Exerc. 2001;  33 1682-1687
  • 7 Cappozzo A. Force actions in the human trunk during running.  J Sports Med Phys Fitness. 1983;  23 14-22
  • 8 Chilibeck P D, Sale D G, Webber C E. Exercise and bone mineral density.  Sports Med. 1995;  19 103-122
  • 9 Conroy B P, Kraemer W J, Maresh C M, Fleck S J, Stone M H, Fry A C, Miller P D, Dalsky G P. Bone mineral density in elite junior Olympic weightlifters.  Med Sci Sports Exerc. 1993;  25 1103-1109
  • 10 Courteix D, Lespessailles E, Peres S L, Obert P, Germain P, Benhamou C L. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports.  Osteoporos Int. 1998;  8 152-158
  • 11 Deutsch M U, Maw G J, Jenkins D, Reaburn P. Heart rate, blood lactate and kinematic data of elite colts (under-19) rugby union players during competition.  J Sports Sci. 1998;  16 561-570
  • 12 Doutreloux J P, Tepe P, Demont M, Passelergue P, Artigot A. Exigences énergétiques estimées selon les postes de jeu en rugby.  Sci Sports. 2002;  17 189-197
  • 13 Ferretti J L, Capozza R F, Cointry G R, Garcia S L, Plotkin H, Alvarez-Filgueira M L, Zanchetta J R. Gender-related differences in the relationships between densitometric values of whole-body bone mineral contenent and lean mass in humans between 2 and 87 years of age.  Bone. 1998;  22 683-690
  • 14 Freychat P, Belli A, Carret J P, Lacour J R. Relationship between rarefoot and forefoot orientation and ground reaction forces during running.  Med Sci Sports Exec. 1996;  28 225-232
  • 15 Frost H M. Vital biomechanics: proposed general concepts for skeletal adaptation to mechanical usage.  Calcif Tissue Int. 1986;  42 145-156
  • 16 Gustavsson A, Thorsen K, Nordstrom P. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males.  Calcif Tissue Int. 2003;  73 108-114
  • 17 Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading.  J Bone Miner Res. 1996;  11 864-872
  • 18 Hamdy R C, Anderson J S, Whalen K E, Harvill L M. Regional differences in bone density of young men involved in different exercises.  Med Sci Sports Exerc. 1994;  26 884-888
  • 19 Hetland M L, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners.  J Clin Endocrinol Metab. 1993;  77 770-775
  • 20 Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pourel J. Environmental and genetic factors affecting bone mass. Similarity of bone density among members of healthy families.  Arthritis Rheum. 1995;  38 61-67
  • 21 Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content.  Bone. 1994;  15 279-284
  • 22 Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players.  Ann Intern Med. 1995;  123 27-31
  • 23 Khan K, McKay H A, Haapasalo H, Bennell K L, Forwood M R, Kannus P, Wark J D. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton?.  J Sci Med Sport. 2000;  3 150-164
  • 24 Lanyon L E. Functional strain as a determinant for bone remodeling.  Calcif Tissue Int. 1984;  36 56-61
  • 25 Lima F, De Falco, Baima J, Carazzato J G, Pereira R M. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes.  Med Sci Sports Exerc. 2001;  33 1318-1323
  • 26 Morel J, Combe B, Francisco J, Bernard J. Bone mineral density of 704 amateur sportsmen involved in different physical activities.  Osteoporos Int. 2001;  12 152-157
  • 27 Nevill A, Holder R, Stewart A. Do sporting activities convey benefits to bone mass throughout the skeleton?.  J Sports Sci. 2004;  22 645-650
  • 28 Nordstrom P, Nordstrom G, Lorentzon R. Correlation of bone density to strength and physical activity in young men with a low or moderate level of physical activity.  Calcif Tissue Int. 1997;  60 332-337
  • 29 Schneider V, Oganov V, LeBlanc A, Rakmonov A, Taggart L, Bakulin A, Huntoon C, Grigoriev A, Varonin L. Bone and body mass changes during space flight.  Acta Astronaut. 1995;  36 463-466
  • 30 Seeman E. Clinical review 137: Sexual dimorphism in skeletal size, density, and strength.  J Clin Endocrinol Metab. 2001;  86 4576-4584
  • 31 Smith E L, Gilligan C. Physical activity effects on bone metabolism.  Calcif Tissue Int. 1991;  49 50-54
  • 32 Stewart A D, Hannan J. Total and regional bone density in male runners, cyclists, and controls.  Med Sci Sports Exerc. 2000;  32 1373-1377
  • 33 Subotnick S I. The biomechanics of running. Implications for the prevention of foot injuries.  Sports Med. 1985;  2 144-153
  • 34 Suominen H. Bone mineral density and long term exercise. An overview of cross-sectional athlete studies.  Sports Med. 1993;  16 316-330
  • 35 Taaffe D R, Marcus R. Regional and total body bone mineral density in elite collegiate male swimmers.  J Sports Med Phys Fitness. 1999;  39 154-159
  • 36 Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez J A, Dorado C, Calbet J A. High femoral bone mineral density accretion in prepubertal soccer players.  Med Sci Sports Exerc. 2004;  36 1789-1795
  • 37 Virvidakis K, Georgiou E, Korkotsidis A, Ntalles K, Proukakis C. Bone mineral content in junior competitive weightlifters.  Int J Sports Med. 1990;  11 244-246
  • 38 Wittich A, Mautalen C A, Oliveri M B, Bagur A, Somoza F, Rotemberg E. Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls.  Calcif Tissue Int. 1998;  63 112-117

G. Lac

Laboratoire de Physiologie de la Performance Motrice, Université Blaise Pascal, Bat Biologie B

Les Cézeaux

63177 Aubière

France

Phone: + 0473407973

Email: gerard.lac@univ-bpclermont.fr