Horm Metab Res 2005; 37(3): 178-183
DOI: 10.1055/s-2005-861292
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Effects of Estrogen Replacement Therapy on Bone and Glucose Metabolism in a Male with Congenital Aromatase Deficiency

B.  L.  Herrmann1 , O.  E.  Janssen1 , S.  Hahn1 , M.  Broecker-Preuss2 , K.  Mann1, 2
  • 1Department of Endocrinology, University Hospital of Essen, Germany
  • 2Department of Clinical Chemistry, University Hospital of Essen, Germany
Further Information

Publication History

Received 19 July 2004

Accepted after revision 10 August 2004

Publication Date:
12 April 2005 (online)

Abstract

Little is known about the impact of estrogen replacement therapy for bone formation, glucose metabolism and hormonal parameters on males with aromatase deficiency. Transdermal estrogen (TE) replacement was initiated at 100 µg/week in months 0 - 3, 50 µg/week in months 3 - 6, 25 µg/week in months 6 - 12, 75 µg/week in months 12 - 24, and 25 µg/week in months 24 - 36 to substitute for the deficiency in a 27-year-old homozygous male with a mutation on the CYP19 gene. Estradiol levels increased from < 10 at baseline to 45, 12, 27 and 17 pg/ml (normal range 10 - 50) after 6, 12, 24 and 36 months, and inversely correlated to LH and FSH levels. Testosterone levels changed from 31.2 nmol/l at baseline to 3.8, 22.1, 7.1 and 22.0 nmol/l (9.5 - 30) after 6, 12, 24 and 36 months, respectively, and correlated closely to basal and stimulated LH and FSH levels at 100 µg GnRH. Bone maturation progressed, and metacarpal and phalangeal epiphysis closed after 12 months. Spongiosa-hydroxyapatite of the radius assessed by quantitative computed tomography changed from 52 to 83, 51, 69 and 71 mg/cm3 (120 - 160); bone mineral density of the lumbar spine assessed by dual energy X-ray-absorptiometry (normal value > 1.150) increased from 0.971 (T-Score -2.24) to 1.043 (-1.64), 1.065 (-1.46), 1.128 (-0.93) g/cm2 and 1.021 (-1.82) after 6, 12, 24 and 36 months of TE, respectively. Osteocalcin as a bone formation parameter and aminoterminal collagen type I telopeptide as a bone resorption parameter increased during high-dose estrogen supplementation, and then decreased during the lower doses. Lipoprotein (a) increased from 20 mg/dl at baseline to 60 and 62 mg/dl after 6 and 12 months, and then decreased to 24 and 25 mg/dl after 24 and 36 months, respectively, while total cholesterol, HDL, LDL and triglycerides did not change. AUC glucose decreased continuously after oral glucose load, and HOMA IR reached its lowest value the 75 µg weekly estradiol dose. This study confirms the role of estrogens in achieving bone mineralization and maturation in human males. Additionally, estradiol has dual negative feedback sites that on the hypothalamus to decrease GnRH pulse frequency, and on the pituitary to decrease responsiveness to GnRH. The improvement in glucose metabolism after estrogen replacement therapy suggests a probable role of sex steroids in insulin sensitivity. The optimal weekly dose of transdermal estrogen replacement for normalizing estrogen levels and maintain bone mass in adult males with aromatase deficiency may be 50 - 75 µg spread over two doses.

References

  • 1 Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne C D, Davis S, Simpson E R, Carani C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment.  J Clin Endocrinol Metab. 2004;  89 61-70
  • 2 Morishima A, Grumbach M M, Simpson E R, Fisher C, Qin K. Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens.  J Clin Endocrinol Metab. 1995;  80 3689-3698
  • 3 Deladoey J, Fluck C, Bex M, Yoshimura N, Harada N, Mullis P E. Aromatase deficiency caused by a novel P450arom gene mutation: impact of absent estrogen production on serum gonadotropin concentration in a boy.  J Clin Endocrinol Metab. 1999;  84 4050-4054
  • 4 Herrmann B L, Saller B, Janssen O E, Gocke P, Bockisch A, Sperling H, Mann K, Broecker M. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene.  J Clin Endocrinol Metab. 2002;  87 5476-5484
  • 5 Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach K S, Simpson E R. Effect of testosterone and estradiol in a man with aromatase deficiency.  N Engl J Med. 1997;  337 91-95
  • 6 Rochira V, Faustini-Fustini M, Balestrieri A, Carani C. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters.  J Clin Endocrinol Metab. 2000;  85 1841-1845
  • 7 Simpson E R, Mahendroo M S, Means G D, Kilgore M W, Hinshelwood M M, Graham-Lorence S, Amarneh B, Ito Y, Fisher C R, Michael M D. et al . Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis.  Endocr Rev. 1994;  15 342-355
  • 8 Simpson E R. Genetic mutations resulting in estrogen insufficiency in the male.  Mol Cell Endocrinol. 1998;  145 55-59
  • 9 Simpson E R, Michael M D, Agarwal V R, Hinshelwood M M, Bulun S E, Zhao Y. Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage.  Faseb J. 1997;  11 29-36
  • 10 Bilezikian J P, Morishima A, Bell J, Grumbach M M. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency.  N Engl J Med. 1998;  339 599-603
  • 11 Rochira V, Balestrieri A, Faustini-Fustini M, Carani C. Role of estrogen on bone in the human male: insights from the natural models of congenital estrogen deficiency.  Mol Cell Endocrinol. 2001;  178 215-220
  • 12 Grumbach M M, Auchus R J. Estrogen: consequences and implications of human mutations in synthesis and action.  J Clin Endocrinol Metab. 1999;  84 4677-4694
  • 13 Grumbach M M. Estrogen, bone, growth and sex: a sea change in conventional wisdom.  J Pediatr Endocrinol Metab. 2000;  13 1439-1455
  • 14 Radziuk J. Insulin sensitivity and its measurement: structural commonalities among the methods.  J Clin Endocrinol Metab. 2000;  85 4426-4433
  • 15 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 16 Haffner S M, Miettinen H, Stern M P. The homeostasis model in the San Antonio Heart Study.  Diabetes Care. 1997;  20 1087-1092
  • 17 Rochira V, Balestrieri A, Faustini-Fustini M, Borgato S, Beck-Peccoz P, Carani C. Pituitary function in a man with congenital aromatase deficiency: effect of different doses of transdermal E2 on basal and stimulated pituitary hormones.  J Clin Endocrinol Metab. 2002;  87 2857-2862
  • 18 Finkelstein J S, Whitcomb R W, O’Dea L S, Longcope C, Schoenfeld D A, Crowley W F Jr. Sex steroid control of gonadotropin secretion in the human male. I. Effects of testosterone administration in normal and gonadotropin-releasing hormone-deficient men.  J Clin Endocrinol Metab. 1991;  73 609-620
  • 19 Veldhuis J D, Dufau M L. Estradiol modulates the pulsatile secretion of biologically active luteinizing hormone in man.  J Clin Invest. 1987;  80 631-638
  • 20 Veldhuis J D, Rogol A D, Samojlik E, Ertel N H. Role of endogenous opiates in the expression of negative feedback actions of androgen and estrogen on pulsatile properties of luteinizing hormone secretion in man.  J Clin Invest. 1984;  74 47-55
  • 21 Vanderschueren D, Bouillon R. Estrogen deficiency in men is a challenge for both the hypothalamus and pituitary.  J Clin Endocrinol Metab. 2000;  85 3024-3026
  • 22 Couse J F, Korach K S. Estrogen receptor null mice: what have we learned and where will they lead us?.  Endocr Rev. 1999;  20 358-417
  • 23 Takeda K, Toda K, Saibara T, Nakagawa M, Saika K, Onishi T, Sugiura T, Shizuta Y. Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency.  J Endocrinol. 2003;  176 237-246
  • 24 Jones M E, Thorburn A W, Britt K L, Hewitt K N, Wreford N G, Proietto J, Oz O K, Leury B J, Robertson K M, Yao S, Simpson E R. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity.  Proc Natl Acad Sci U S A. 2000;  97 12 735-12 740
  • 25 Zmunda J M, Thompson P D, Dickenson R, Bausserman L L. Testosterone decreases lipoprotein(a) in men.  Am J Cardiol. 1996;  77 1244-1247
  • 26 Zmuda J M, Fahrenbach M C, Younkin B T, Bausserman L L, Terry R B, Catlin D H, Thompson P D. The effect of testosterone aromatization on high-density lipoprotein cholesterol level and postheparin lipolytic activity.  Metabolism. 1993;  42 446-450

B. L. Herrmann, M. D.

Department of Endocrinology, Center of Internal Medicine, University Hospital of Essen

Hufelandstr. 55 · 45122 Essen · Germany

Phone: +49(201)723-3235

Fax: +49(201)723-3235 ·

Email: burkhard.herrmann@uni-essen.de