Subscribe to RSS
DOI: 10.1055/s-2005-858330
© Georg Thieme Verlag KG Stuttgart · New York
Untersuchungen zur Markierung von mesenchymalen Stammzellen mit unterschiedlichen superparamagnetischen Eisenoxidpartikeln und Nachweisbarkeit in der MRT bei 3T
Labeling of Mesenchymal Stem Cells with Different Superparamagnetic Particles of Iron Oxide and Detectability with MRI at 3TPublication History
Publication Date:
14 July 2005 (online)
Zusammenfassung
Ziel: In-vitro-Untersuchungen zur Markierungseffizienz von humanen mesenchymalen Stammzellen mit superparamagnetischen Eisenoxidpartikeln sowie Nachweisbarkeit und Quantifizierung in der MRT bei 3T. Material und Methoden: hMSC wurden mit unterschiedlichen Konzentrationen von Resovist®, Endorem®, zitratumhüllten Magnetoferrit- (3, 7 nm) und Kobaltferrit-Partikeln (12 nm) inkubiert. Partikelaufnahme, intrazelluläre Verweildauer sowie Visualisierung und Quantifizierung der markierten hMSC wurden bis 5 Wochen nach Inkubation in der MRT bei 3T erfasst, zytologisch korreliert und atomabsorptionsspektrometrisch (AAS) quantifiziert. Ergebnisse: hMSC konnten effektiv mit Resovist® sowie zitratumhüllten USPIOs (CMF7, CMF3) markiert werden (mittlerer intrazellulärer Eisengehalt: 5,1/1,8, 1,9/1,4 und 1,5/1,0 pg/Zelle [Resovist®, CMF7, CMF3] vs. 0,58/0,34 und 0,43/0,30 pg/Zelle [Endorem®- und Kobaltferrit-Partikel], Inkubationskonzentrationen 1 : 30/1 : 300). Die Partikelaufnahme korreliert mit der Konzentration von (U)SPIO im Inkubationsmedium. Eine MR-Detektion von 5 × 104 Fe-markierten hMSC/ml war bis zu 5 (Resovist®, CMF7 and CMF3) bzw. 3 - 4 Wochen (Endorem, Kobaltferrit) in einem klinischem MR-Tomographen möglich. Eine quantitative Bestimmung des intrazellulären Eisengehaltes kann mittels MR-Relaxometrie erfolgen. Schlussfolgerung: Die Effizienz einer magnetischen Markierung von hMSCs hängt von der Kombination aus Größe, Hüllen- und Kernbeschaffenheit der verwendeten Partikel ab. Mittelgroße, klinisch erprobte Carboxydextran- (˜ 50 nm) und ultrakleine, experimentelle zitratumhüllte Partikel (< 10 nm) führen zu einer effektiven Zellmarkierung. Die lange Partikelpersistenz ermöglicht prinzipiell ein langes diagnostisches Zeitfenster zum Stammzelltracking.
Abstract
Purpose: In vitro evaluation of labeling efficiency of human mesenchymal stem cells (hMSCs) with different types of superparamagnetic iron oxide nanoparticles as well as detection and quantification by MRI at 3T. Material and Methods: hMSCs were incubated for 24 hours with 5 ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agents (1 : 30 - 1 : 30,000) of different size, coating and core compound: Endorem®, Resovist®, citric acid coated magnetite cores of 3 nm (CMF3), 7 nm (CMF7) and 12 nm (CoF, core: cobalt ferrite). Iron uptake, intracellular retention, detection and quantification were evaluated with MRI up to 5 weeks after incubation by cytological analysis (Prussian blue), atomic absorption spectrometry and MR relaxometry measurements. Results: An effective labeling of hMSCs was achieved using Resovist®, CMF3 and CMF7 with mean iron concentrations of 5.1/1.8, 1.9/1.4 and 1.5/1.0 pg/cell (dilutions 1:30 [933, 2100, 2800 µg Fe/ml]/1 : 300 [93, 210, 280 µg Fe/ml]) compared with 0.58/0.34 and 0.43/0.30 pg/cell (Endorem®, CoF, dilution 1 : 30 [400, 4200 µg Fe/ml]/1 : 300 [40, 420 µg Fe/ml] unlabelled control cells: 0.01 pg/cell). Particle uptake correlated with the concentration of USPIO in the incubation medium. Detection of 5 × 104 labelled cells/ml with MRI was possible up to 5 weeks after incubation (Resovist®, CMF7 and CMF3). MR relaxometry measurements showed a strong correlation between cellular iron load and R2* (1/T2*), r > 0.78. No changes in cell viability or toxic effects were found. Conclusion: Efficiency of labeling hMSCs with USPIOs depends on coating, size and core compound of used particles. Carboxydextran-coated, clinically approved SPIO (Resovist®, 50 nm) or ultrasmall citrate-coated particles (< 10 nm) result in an improved cellular uptake. In principle, the long intracellular retention of particles offers the possibility of cell tracking and migration monitoring in MRI.
Key words
Cell labeling - USPIO - stem cells - MRI
Literatur
- 1 Verfaillie C M, Pera M F, Lansdorp P M. Stem cells: hype and reality. Hematology (Am Soc Hematol Educ Program). 2002; 369-391
- 2 McKay R. Stem cells - hype and hope. Nature. 2000; 406 361-364
- 3 Horwitz E M. Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res. 2003; 34 600-606
- 4 Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000; 28 875-884
- 5 Ohgushi H, Kitamura S, Kotobuki N. et al . Clinical application of marrow mesenchymal stem cells for hard tissue repair. Yonsei Med J. 2004; 45 S61-67
- 6 Shamblott M J, Axelman J, Wang S. et al . Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998; 95 13 726-13 731
- 7 Thomson J A, Itskovitz-Eldor J, Shapiro S S. et al . Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282 1145-1147
- 8 Kale S, Karihaloo A, Clark P R. et al . Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003; 112 42-49
- 9 Lee H S, Huang G T, Chiang H. et al . Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 2003; 21 190-199
- 10 Lee J W, Kim Y H, Kim S H. et al . Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J. 2004; 45 S41-47
- 11 Pittenger M F, Mackay A M, Beck S C. et al . Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284 143-147
- 12 Toma C, Pittenger M F, Cahill K S. et al . Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002; 105 93-98
- 13 Bulte J W, Duncan I D, Frank J A. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab. 2002; 22 899-907
- 14 Bulte J W, Hoekstra Y, Kamman R L. et al . Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med. 1992; 25 148-157
- 15 Bulte J W, Zhang S, van Gelderen P. et al . Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci U S A. 1999; 96 15 256-15 261
- 16 Hill J M, Dick A J, Raman V K. et al . Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation. 2003; 108 1009-1014
- 17 Kircher M F, Allport J R, Graves E E. et al . In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 2003; 63 6838-6846
- 18 Walter G A, Cahill K S, Huard J. et al . Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med. 2004; 51 273-277
- 19 Taupitz M, Schmitz S, Hamm B. Superparamagnetische Eisenoxidpartikel: Aktueller Stand und zukünftige Entwicklungen. Fortschr Röntgenstr. 2003; 175 752-765
- 20 Schmitz S A, Albrecht T, Jensen K. et al . SPIO-unterstützte MR-Angiographie des portalvenösen Systems. Fortschr Röntgenstr. 2000; 172 51-54
- 21 Schmitz S A, Albrecht T, Wolf K J. MR angiography with superparamagnetic iron oxide: feasibility study. Radiology. 1999; 213 603-607
- 22 Schmitz S A, Hansel J, Wagner S. et al . SPIO-unterstützte MR-Angiographie zur Detektion venöser Thromben im Tiermodell. Fortschr Röntgenstr. 1999; 170 316-321
- 23 Hamm B, Reichel M, Vogl T. et al . Superparamagnetische Eisenoxidpartikel: Welchen Stellenwert hat der T1-Effekt fur die MR-Diagnostik fokaler Leberläsionen?. Fortschr Röntgenstr. 1994; 160 52-58
- 24 Heim P, Steiner P, Schoder V. et al . Detektion von Leberläsionen mit der Gadolinium-verstärkten VIBE-Sequenz im Vergleich zur SPIO-verstärkten MRT. Fortschr Röntgenstr. 2003; 175 1376-1383
- 25 Helmberger T, Gregor M, Holzknecht N. et al . Einfluß von biphasischer Spiral-CT, nativer und eisenoxidverstärkter MRT auf Therapie und Therapiekosten bei Patienten mit fokalen Leberläsionen. Fortschr Röntgenstr. 2000; 172 251-259
- 26 Muller R D, Vogel K, Neumann K. et al . MRT mit superparamagnetischen Eisenpartikeln versus Doppelspiral-CT beim Nachweis maligner Leberläsionen. Fortschr Röntgenstr. 1998; 168 436-443
- 27 Stroszczynski C, Gaffke G, Gretschel S. et al . Differenzierung von Leberläsionen mit SPIO-gestützten T1-w und T2-w MRT-Aufnahmen: Eine ROC-Analyse. Fortschr Röntgenstr. 2003; 175 1368-1375
- 28 Urhahn R, Adam G, Busch N. et al . Superparamagnetische Eisenoxidpartikel: Welchen Stellenwert hat der T1-Effekt für die MR-Diagnostik fokaler Leberläsionen?. Fortschr Röntgenstr. 1996; 165 364-370
- 29 Grimm J, Karger N, Lusse S. et al . Characterization of ultrasmall magnetite [correction of paramagnetic magnetite] particles as superparamagnetic contrast agents in MRI. Invest Radiol. 2000; 35 553-556
- 30 Daldrup-Link H E, Reinlander C, Link T M. et al . Experimentelle Untersuchungen zur Wertigkeit von SPIO für die MRT des Knochenmarkes vor und nach Ganzkörperbestrahlung. Fortschr Röntgenstr. 2001; 173 547-553
- 31 Beyersdorff D, Taupitz M, Giessing M. et al . Staging von Harnblasentumoren in der MRT: Wertigkeit der intravesikalen Applikation von eisenoxidhaltigem Kontrastmittel in Kombination mit hochaufgelöster T2-gewichteter Bildgebung. Fortschr Röntgenstr. 2000; 172 504-508
- 32 Arbab A S, Bashaw L A, Miller B R. et al . Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation. 2003; 76 1123-1130
- 33 Arbab A S, Bashaw L A, Miller B R. et al . Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003; 229 838-846
- 34 Bowen C V, Zhang X, Saab G. et al . Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med. 2002; 48 52-61
- 35 Bulte J W, Arbab A S, Douglas T. et al . Preparation of magnetically labeled cells for cell tracking by magnetic resonance imaging. Methods Enzymol. 2004; 386 275-299
- 36 Bulte J W, De Cuyper M. Magnetoliposomes as contrast agents. Methods Enzymol. 2003; 373 175-198
- 37 Bulte J W, Douglas T, Witwer B. et al . Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol. 2002; 9 S332-335
- 38 Bulte J W, Douglas T, Witwer B. et al . Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol. 2001; 19 1141-1147
- 39 Bulte J W, Ma L D, Magin R L. et al . Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med. 1993; 29 32-37
- 40 Bulte J W, Zhang S C, van Gelderen P. et al . Magnetically labeled glial cells as cellular MR contrast agents. Acad Radiol. 2002; 9 S148-150
- 41 Daldrup-Link H E, Rudelius M, Oostendorp R A. et al . Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology. 2003; 228 760-767
- 42 de Laquintane B D, Dousset V, Solanilla A. et al . Iron particle labeling of haematopoietic progenitor cells: an in vitro study. Biosci Rep. 2002; 22 549-554
- 43 Fleige G, Seeberger F, Laux D. et al . In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol. 2002; 37 482-488
- 44 Frank J A, Miller B R, Arbab A S. et al . Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology. 2003; 228 480-487
- 45 Frank J A, Zywicke H, Jordan E K. et al . Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol. 2002; 9 484-487
- 46 Hinds K A, Hill J M, Shapiro E M. et al . Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood. 2003; 102 867-872
- 47 Josephson L, Tung C H, Moore A. et al . High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 1999; 10 186-191
- 48 Kalish H, Arbab A S, Miller B R. et al . Combination of transfection agents and magnetic resonance contrast agents for cellular imaging: relationship between relaxivities, electrostatic forces, and chemical composition. Magn Reson Med. 2003; 50 275-282
- 49 Lewin M, Carlesso N, Tung C H. et al . Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000; 18 410-414
- 50 Wang Y X, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001; 11 2319-2331
- 51 Dodd C H, Hsu H C, Chu W J. et al . Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods. 2001; 256 89-105
- 52 Hoehn M, Kustermann E, Blunk J. et al . Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A. 2002; 99 16 267-16 272
- 53 Bulte J W, Ben-Hur T, Miller B R. et al . MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med. 2003; 50 201-205
- 54 Lange C, Schroeder J, Lioznov M V. et al . High-potential human mesenchymal stem cells. Stem Cells and Dev. 2005; 14 70-80
- 55 Bulte J W, Laughlin P G, Jordan E K. et al . Tagging of T cells with superparamagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol. 1996; 3 S301-303
- 56 Shen T, Weissleder R, Papisov M. et al . Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med. 1993; 29 599-604
- 57 Delong R, Stephenson K, Loftus T. et al . Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J Pharm Sci. 1997; 86 762-764
- 58 Zhang Z Y, Smith B D. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjug Chem. 2000; 11 805-814
- 59 Gutteridge J M, Rowley D A, Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’ iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981; 199 263-265
- 60 Gutteridge J M, Rowley D A, Halliwell B. Superoxide-dependent formation of hydroxyl radicals and lipid peroxidation in the presence of iron salts. Detection of ‘catalytic’ iron and anti-oxidant activity in extracellular fluids. Biochem J. 1982; 206 605-609
- 61 Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed Pharmacother. 2001; 55 333-339
- 62 Sipe J C, Filippi M, Martino G. et al . Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents. Magn Reson Imaging. 1999; 17 1521-1523
- 63 Dodd S J, Williams M, Suhan J P. et al . Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys J. 1999; 76 103-109
Dr. med. Harald Ittrich
Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie - Radiologisches Zentrum
Universitätsklinikum Hamburg-Eppendorf
Martinistraße 52
20246 Hamburg
Phone: ++ 49/40/4 28 03 40 10
Fax: ++ 49/40/4 28 03 67 99
Email: ittrich@uke.uni-hamburg.de