Subscribe to RSS
DOI: 10.1055/s-2004-835659
An Efficient Synthesis of Chiral Cyclic β-Amino Acids via Asymmetric Hydrogenation
Publication History
Publication Date:
10 November 2004 (online)
Abstract
Cyclic β-amino acids, homoproline, homopipecolic acid and 3-carboxy-methylmorpholine were obtained in high enantiomeric excesses by transition metal-catalyzed asymmetric hydrogenation of cyclic β-acylamino-alkenoates. These compounds were synthesized by a thio-Wittig reaction on N-protected thiolactames.
Key words
β-aminoacids - asymmetric synthesis - rhodium - ruthenium - iridium
-
1a
Dado GP.Gellman SH. J. Am. Chem. Soc. 1994, 116: 1054 -
1b
Crisma M.Formaggio F.Pantano M.Valle G.Bonora GM.Toniolo C.Schoemaker HE.Kamphuis J. J. Chem. Soc., Perkin Trans. 2 1994, 1735 -
1c
Seebach D.Overhand M.Kühnle FNM.Martinoni B.Oberer L.Hommel U.Widmer H. Helv. Chim. Acta 1996, 79: 913 -
1d
Seebach D.Matthews JL. Chem. Commun. 1997, 2015 -
1e
Gellman SH. Acc. Chem. Res. 1998, 31: 173 -
2a
Sewald N. Bioorganic Chemistry, Highlights and New AspectsDiederichsen U.Lindhorst TK.Westermann B.Wessjohann LA. Wiley-VCH; Weinheim: 1999. Chap. 4.2. p.193 -
2b
Sasaki NA.Dockner M.Chiaroni A.Riche C.Potier P. J. Org. Chem. 1997, 62: 765 -
2c
Hammer K.Undheim K. Tetrahedron: Asymmetry 1998, 9: 2359 -
2d
Rutjes FPJT.Schoemaker HE. Tetrahedron Lett. 1997, 38: 677 -
3a
Juaristi E. In Enantioselective Synthesis of β-Amino Acids Wiley VCH; New-York: 1997. -
3b
Liu ML.Sibi MP. Tetrahedron 2002, 58: 7991 -
3c
Park K.-H.Kurth M. Tetrahedron 2002, 58: 8629 -
3d
Sewald N. Angew. Chem. Int. Ed. 2003, 42: 5794 - 4
Gardiner J.Anderson KH.Downard A.Abell A. J. Org. Chem. 2004, 69: 3375 ; and references cited therein - 5
Balaspiri L.Penke B.Papp G.Dombi G.Kovacs K. Helv. Chim. Acta 1975, 58: 969 - 6
Morley C.Knight DW.Share AC. J. Chem. Soc., Perkin Trans. 1 1994, 2903 -
7a
Enders D.Wiedemann J. Liebigs Ann. Recl. 1997, 699 -
7b
O’Brien P.Porter DW.Smith NM. Synlett 2000, 1336 -
7c
Baenziger M.Gobbi L.Riss BP.Schaefer F.Vaupel A. Tetrahedron: Asymmetry 2000, 11: 2231 -
7d
Davies SG.Iwamoto K.Smethurst CAP.Smith AD.Rodriguez-Solla H. Synlett 2002, 1146 -
8a
Nikiforov T.Stanchev S.Milenkov B.Dimitrov B. Heterocycles 1986, 24: 1825 -
8b
Bardou A.Célérier J.-P.Lhommet G. Tetrahedron Lett. 1997, 38: 8507 -
9a
Lubell WD.Kitamura M.Noyori R. Tetrahedron: Asymmetry 1991, 2: 543 -
9b
Zhu G.Chen Z.Zhang X. J. Org. Chem. 1999, 64: 6907 -
9c
Yasutake M.Gridnev ID.Higashi N.Imamoto T. Org. Lett. 2001, 3: 1701 -
9d
Heller D.Holz J.Drexler H.-J.Komarov IV.Drauz K.Jingsong Y.Börner A. Tetrahedron: Asymmetry 2002, 13: 2735 -
9e
Heller D.Holz J.Drexler H.-J.You J.Drauz K.Krimmer H.-P.Börner A. J. Org. Chem. 2001, 66: 6816 -
9f
Lee S.-G.Zhang X. Org. Lett. 2002, 4: 2429 -
9g
Tang W.Zhang X. Org. Lett. 2002, 4: 4159 -
9h
Zhou Y.-G.Tang W.Wang W.-B.Li W.Zhang X. J. Am. Chem. Soc. 2002, 124: 4952 -
9i
Heller D.Holz J.Drexler H.-J.Lang J.Baumann W.Drauz K.Krimmer H.-P.Börner A. Chem.-Eur. J. 2002, 8: 5196 -
9j
Pena D.Minnaard AJ.de Vries JG.Feringa BL. J. Am. Chem. Soc. 2002, 124: 14552 -
9k
Holz J.Monsees A.Drexler H.-J.Jiao H.You J.Komarov IV.Fischer C.Drauz K.Börner A. J. Org. Chem. 2003, 68: 1701 -
9l
You J.Drexler H.-J.Jiao H.Zhang S.Fischer C.Heller D. Angew. Chem. Int. Ed. 2003, 42: 913 -
10a
Zhang YJ.Park JH.Lee S. Tetrahedron: Asymmetry 2004, 15: 2209 -
10b
Callens R,Larchevêque M,Pousset C, andMarinetti A. inventors; Eur. Pat. Appl. EP 003614. Our work was also published in part in a patent: -
11a
Célérier J.-P.Deloisy-Marchalant E.Lhommet G. J. Heterocycl. Chem. 1984, 21: 1633 -
11b
Brunerie P.Célérier J.-P.Petit H.Lhommet G. J. Heterocycl. Chem. 1986, 23: 1183 - 12
Gossauer A.Hinze R.-P.Zilch H. Angew. Chem., Int. Ed. Engl. 1977, 16: 418 -
14a
Marinetti A.Labrue F.Genêt JP. Synlett 1999, 1975 -
14b
Berens U.Burk MJ.Gerlach A.Hems W. Angew. Chem. Int. Ed. 2000, 39: 1981 -
15a
Brown JM. In Comprehensive Asymmetric CatalysisJacobsen IEN.Pfaltz A.Yamamoto Y. Springer; Germany: 1999. Chap. 5.1. p.122 -
15b
Noyori R. Angew. Chem. Int. Ed. 2002, 41: 2008 - 16
Genêt J.-P.Pinel C.Ratovelomanana-Vidal V.Mallart S.Pfister X.Bischoff L.Cano de Andrade MC.Darses S.Galopin C.Laffitte JA. Tetrahedron: Asymmetry 1994, 5: 675 - 17
Landis CR.Halpern J. J. Am. Chem. Soc. 1987, 109: 1746 -
18a
Lightfoot A.Schnider P.Pfaltz A. Angew. Chem. Int. Ed. 1998, 37: 2897 -
18b
Xiao D.Zhang X. Angew. Chem. Int. Ed. 2001, 40: 3425 -
18c
Blankenstein J.Pfaltz A. Angew. Chem. Int. Ed. 2001, 40: 4445 -
18d
Menges F.Pfaltz A. Adv. Synth. Catal. 2002, 344: 40 -
18e
Liu D.Tang W.Zhang X. Org. Lett. 2004, 6: 513 -
19a
Morimoto T.Achiwa K. Tetrahedron: Asymmetry 1995, 6: 2661 -
19b
Sablong R.Osborn JA. Tetrahedron: Asymmetry 1996, 7: 3059 -
19c
Blaser H.-U.Pugin B.Spindler F.Togni A. C. R. Chim. 2002, 5: 1 -
19d
Cozzi PG.Menges F.Kaiser S. Synlett 2003, 833 - 22
Brown GR.Foubister AJ.Stribling D. J. Chem. Soc., Perkin Trans. 1 1987, 547 - 24
Ohta T.Takaya H.Noyori R. Inorg. Chem. 1988, 566 - 25
Wiles JA.Bergens SH. Organometallics 1999, 18: 3709 -
26a
Brown JM.Chaloner PA. J. Chem. Soc., Chem. Commun. 1978, 321 -
26b
Brown JM.Chaloner PA. J. Chem. Soc., Chem. Commun. 1980, 344 -
26c
Chan ASC.Halpern J. J. Am. Chem. Soc. 1980, 102: 838 -
26d
Chan ASC.Halpern J. J. Am. Chem. Soc. 1987, 109: 1746 -
26e
Chan ACS.Pluth JJ.Halpern J. J. Am. Chem. Soc. 1980, 102: 5952
References
Yields from the corresponding N-protected thiolactames: compound 2: 60% (E: 100%); compound 3: 55% (E:Z = 87:13). The reaction failed with hindered protective groups such as Boc.
20Compound 4 was obtained as the pure E-isomer using the reaction of a Peterson reagent (Me3SiCHLi-CO2Et) with the N-protected δ-lactone.
21
Typical Procedures: Ruthenium: [(COD)Ru(2-methylallyl)2] (0.01 mmol, 3.2 mg, 1 equiv) and (S,S)-MeO-Biphep (0.012 mmol, 7 mg, 1.2 equiv) were stirred under argon for 30 min in acetone (1 mL), 0.16 N HBr in MeOH (140 µL, 2.2 equiv) was then slowly added and the solution was stirred for 30 min at r.t. The unsaturated enamido ester (100 equiv) was then added and the solution was transferred into an autoclave. The autoclave was then purged three times with hydrogen and filled with hydrogen at the required pressure. The mixture was stirred at r.t. for 24 h. After release of the hydrogen, the solvent was evaporated. The residue was passed through a short silica gel plug to give the reducted β-amino esters.
Rhodium: [(R,R)-(Me-DuPHOS)Rh(COD)(OTf)] (0.01 mmol, 6.6 mg, 1 equiv) was stirred under argon in degassed CH2Cl2 (1 mL) at r.t. The unsaturated enamido ester (100 equiv) in CH2Cl2 was then added and the solution was transferred into an autoclave and treated as previously described.
Iridium: [(COD)Ir(Cl)]2 (0.05 mmol, 3.4 mg, 0.5 equiv) and (S)-BINAP (0.012 mmol, 7.5 mg, 1.2 equiv) were stirred under argon in a glass tube for 30 min in degassed CH2Cl2 (2 mL), the unsaturated enamido ester (100 equiv) was then added, the glass tube was transferred into an autoclave and treated as previously described.
Physical Data: compound 5: [α]D
20 +58.5 (c 2.3, CH2Cl2), ee: 97.3%. IR (KBr): 2955, 1737, 1698, 1452, 1385, 1194 cm-1. 1H NMR (200 MHz, CDCl3), two conformers: δ = 1.23, 1.25 (2 t, 3 H, J = 7.1 and 7.2 Hz), 1.73-2.11 (m, 4 H), 2.01, 2.10 (2 s, 3 H), 2.31, 2.41, 2.54, 2.94 (4 dd, 2 × 2 H,
J = 3.9, 9.5, 15.4 and 3.6, 10.3, 15.4 Hz), 3.43 (m, 2 H), 4.12 (2 q, 2 H, J = 7.1 and 7.2 Hz), 4.23, 4.38 (2 m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 14.2, 23.0, 23.9, 30.1, 37.6, 47.9, 53.8, 60.4, 169.3, 171.5. MS (CI, NH3): m/z (%) = 217 (100) [M + 1], 200(23). Compound 6: [α]D
20 +13.7 (c 4.0, CHCl3), ee: 95.1%. IR (KBr): 2976, 1735, 1701, 1413, 1392, 1163 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.23 (t, 3 H, J = 7.1 Hz), 1.40-1.60 (m, 6 H), 2.51 (dd, 2 H, J = 8.0 and 14.3 Hz), 2.81 (dd, 1 H, J = 7.4 and 14.3 Hz), 2.83 (t, 1 H, J = 11.5 Hz), 3.66 (s, 3 H), 4.07 (br s, 1 H), 4.09 (q, 2 H, J = 7.2 Hz), 4.72 (br s, 1 H). 13C NMR (50 MHz, D2O): δ = 21.5, 21.9, 28.2, 40.0, 44.6, 54.6, 177.7. MS (CI): m/z = 144. Anal. Calcd for C11H19NO4: C, 57.62; H, 8.35; N, 6.11. Found: C, 57.48; H, 8.53; N, 6.02.
(2
R
)-2-Carboxymethylpiperidine: The ester 6 (0.5 mmol) was saponified at r.t. with KOH (2.75 mmol, 5.5 equiv) in solution in a EtOH (3.5 mL)-H2O (0.75 mL) mixture for 48 h. After evaporation, the solid residue was then treated with HBr in HOAc (33%) for 24 h. After elimination of the HOAc under vacuo, the residue was chromatographed on Dowex H+ 50X8 resin (2 M aq NH3) to give a white solid (70%): mp 95 °C (hexane); [α]D
20 -28 (c 0.60, H2O), lit.
[6]
93 °C; S compound [α]D
20 +33.5 (c 0.60, H2O). IR (KBr): 3500-3200, 3011, 2980, 1736, 1639, 1433, 1185 cm-1. 1H NMR (200 MHz, D2O): δ = 1.41 (m, 3 H), 1.76 (m, 3 H), 2.37 (d, 2 H, J = 6.7 and 15.0 Hz), 2.89 (td, 1 H, J = 12.6 and 12.7), 3.28 (m, 2 H). 13C NMR (50 MHz, D2O): δ = 21.5, 21.9, 28.2, 40.0, 44.6, 54.6, 177.7. MS (CI): m/z = 144. Compound 8: [α]D
20 +30.2 (c 1.15, CH2Cl2), ee: 85.5%. IR (KBr): 2980, 1735, 1698 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.25 (t, J = 7.1 Hz, 3 H), 1.44 (s, 9 H), 2.54 (dd, J = 5.5 and 15.0 Hz, 1 H), 2.81 (dd, J = 8.8 and 15.0 Hz, 3 H), 4.11 (q, J = 7.1 Hz, 2 H), 4.36 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 14.2, 28.4, 33.8, 39.5, 48.1, 60.7, 66.9, 68.9, 80.3, 154.5, 171.3. MS (EI): m/z (%) = 273 (1), 217 (5), 200 (3), 172 (24), 142 (43), 130 (32), 86 (46), 57 (100), 41 (26). Anal. Calcd for C13H23NO5: C, 57.13; H, 8.48; N, 5.12. Found: C, 57.06; H, 8.63; N, 5.04.
(3 S )-4- tert -Butoxycarbonyl-3-carboxymethylmor-pholine: mp 82 °C (hexane-i-Pr2O, 8:2); [α]D 20 +35.7 (c 1.94, CH2Cl2), ee: 99%. IR (KBr): 3700-2500, 1713, 1694 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.47 (s, 9 H), 2.56 (dd, J = 6.0 and 15.4 Hz, 1 H), 2.83 (dd, J = 8.5 and 15.4 Hz, 1 H), 2.90-3.90 (m, 6 H), 4.34 (m, 1 H). 13C NMR (50 MHz, CDCl3): δ = 28.2, 33.4, 39.4, 48.0, 66.7, 68.8, 80.5, 154.5, 175.9. MS (EI): m/z (%) = 245 (1), 190 (2), 172 (3), 130 (14), 114 (13), 100 (5), 86 (33), 70 (13), 57 (100). Anal. Calcd for C11H19NO5: C, 53.87; H, 7.81; N, 5.71. Found: C, 53.95; H, 7.91; N, 5.59.