Semin Thromb Hemost 2004; 30(4): 473-484
DOI: 10.1055/s-2004-833482
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Platelet Transcriptome: The Application of Microarray Analysis to Platelets

Wadie F. Bahou1 , 2 , 3 , Dmitri V. Gnatenko1
  • 1Department of Medicine, State University of New York, Stony Brook, New York
  • 2Professor of Medicine, State University of New York, Stony Brook, New York
  • 3Program in Genetics, State University of New York, Stony Brook, New York
Further Information

Publication History

Publication Date:
08 September 2004 (online)

Human blood platelets are intimately involved in the regulation of thrombosis, inflammation, and wound repair. These cells retain megakaryocyte-derived cytoplasmic mRNA and functionally intact protein translational capabilities, although very little is known about normal or pathological mRNA profiles. Microarray analysis has demonstrated a clear and reproducible molecular signature unique to platelets. There is a relative paucity of expressed transcripts compared with those found in other eukaryotic cells, most likely related to mRNA decay in these anucleate cells. In contrast, a complementary methodology for transcript profiling (serial analysis of gene expression [SAGE]) demonstrates that 89% of tags represent mitochondrial (mt) transcripts (enriched in 16S and 12S ribosomal RNAs), presumably related to persistent mt-transcription in the absence of nuclear-derived transcripts. The abundance of nonmitochondrial SAGE tags parallels relative expression for the most abundant transcripts as determined by microarray analysis, establishing the concordance of both techniques for platelet profiling. These observations establish the validity of transcript analysis as a tool for identifying novel platelet genes that may regulate normal and pathologic platelet (and/or megakaryocyte) functions. The potential application of platelet-specific microarrays in scientific and clinical settings related to platelet production, cardiovascular, and cerebrovascular diseases is reviewed.

REFERENCES

  • 1 Kieffer N, Guichard J, Farcet J et al.. Biosynthesis of major platelet proteins in human blood platelets.  Eur J Biochem. 1987;  164 189-195
  • 2 Newman P, Gorski J, White G et al.. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction.  J Clin Invest. 1988;  82 739-743
  • 3 Weyrich A, Dixon D, Pabla R et al.. Signal-dependent translation of a regulatory protein, Bcl-2, in activated human platelets.  Proc Natl Acad Sci USA. 1998;  95 5556-5561
  • 4 Benecke B J, Ben Ze'ev A, Penman S. The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts.  Cell. 1978;  14 931-939
  • 5 Pabla R, Weyrich A S, Dixon D A et al.. Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets.  J Cell Biol. 1999;  144 175-184
  • 6 Chicurel M E, Singer R H, Meyer C J, Ingber D E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions.  Nature. 1998;  392 730-733
  • 7 Lindemann S, Tolley N, Eyre J et al.. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets.  J Biol Chem. 2001;  276 33947-33951
  • 8 Rinder H, Schuster J, Rinder C et al.. Correlation of thrombosis with increased platelet turnover in thrombocytosis.  Blood. 1998;  91 1288-1294
  • 9 Link A, Eng J, Schieltz D M et al.. Direct analysis of protein complexes using mass spectrometry.  Nat Biotechnol. 1999;  17 676-682
  • 10 Garrels J, McLaughlin C, Warner J et al.. Proteome studies of Saccharomyces cervisiae: identification and characterization of abundant proteins.  Electrophoresis. 1997;  18 1347-1360
  • 11 Corthals G, Wasinger V, Hochstrasser D, Sanchez J. The dynamic range of protein expression: a challenge for proteomic research.  Electrophoresis. 2000;  21 1104-1115
  • 12 Gygi S, Rochon Y, Franza B, Aebersold R. Correlation between protein and mRNA abundance in yeast.  Mol Cell Biol. 1999;  19 1720-1730
  • 13 Molloy M. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients.  Anal Biochem. 2000;  280 1-10
  • 14 Gygi S, Rist B, Gerber S et al.. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.  Nat Biotechnol. 1999;  17 994-999
  • 15 Marcus K, Immler D, Sternberger J, Meyer H. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins.  Electrophoresis. 2000;  21 2622-2636
  • 16 O'Neill E, Brock C, Von Kriegsheim A et al.. Towards complete analysis of the platelet proteome.  Proteomics. 2002;  2 288-305
  • 17 Maguire P, Fitzgerald D. Platelet proteomics.  J Thromb Haemost. 2003;  1 1593-1601
  • 18 Velculescu V, Zhang L, Vogelstein B, Kinzler K. Serial analysis of gene expression.  Science. 1995;  270 484-487
  • 19 Zhang L, Zhou W, Velculescu V et al.. Gene expression profiles in normal and cancer cells.  Science. 1997;  276 1268-1272
  • 20 Gnatenko D, Dunn J, McCorkle S et al.. Transcript profiling of human platelets using microarray and serial analysis of gene expression.  Blood. 2003;  101 2285-2293
  • 21 Golub T, Slonim D, Tamayo P et al.. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.  Science. 1999;  286 531-537
  • 22 Alizadeh A, Elsen M, Davis R et al.. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.  Nature. 2000;  403 503-511
  • 23 Bertucci F, Houlgatte R, Granjeaud S et al.. Prognosis of breast cancer and gene expression profiling using DNA arrays.  Ann N Y Acad Sci. 2002;  975 217-231
  • 24 Dunn J, McCorkle S, Praissman L et al.. Genome signature tags (GSTs): a system for profiling genomic DNA.  Nucleic Acids Res. 2001;  29 137-140
  • 25 Peters D, Kassam A, Feingold E et al.. Comprehensive transcript analysis in small quantities of mRNA by SAGE-Lite.  Nucleic Acids Res. 1999;  27 39
  • 26 Wang E, Miller L, Ohnmacht G et al.. High-fidelity mRNA amplification for gene profiling.  Nat Biotechnol. 2000;  18 457-459
  • 27 Hart M, Bonely P, Yang R-B et al.. Molecular profile of human platelets and endothelium revealed by large scale expression profiling analyses.  Blood. 2001;  98 752A
  • 28 Pruitt K, Maglott D R. RefSeq and LocusLink: NCBI gene-centered resources.  Nucleic Acids Res. 2001;  29 137-140
  • 29 Fox J E, Boyles J K, Reynolds C C, Phillips D R. Actin filament content and organization in unstimulated platelets.  J Cell Biol. 1984;  98 1985-1991
  • 30 Safer D, Elzinga M, Nachmias V T. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable.  J Biol Chem. 1991;  266 4029-4032
  • 31 Wallace D C. Mouse models for mitochondrial disease.  Am J Med Genet. 2001;  106 71-93
  • 32 Welle S, Bhatt K, Thornton C. Inventory of high-abundance mRNAs in skeletal muscle of normal men.  Genome Res. 1999;  9 506-513
  • 33 Raha S, Robinson B H. Mitochondria, oxygen free radicals, and apoptosis.  Am J Med Genet. 2001;  106 62-70
  • 34 Yu J, Zhang L, Hwang P et al.. Identification and classification of p53-regulated genes.  Proc Natl Acad Sci USA. 1999;  96 14517-14522
  • 35 Petricoin III E, Hackett J, Lesko L et al.. Medical applications of microarray technologies: a regulatory science perspective.  Nat Genet. 2002;  32 474-479
  • 36 Wicki A, Walz A, Gerber-Huber S et al.. Isolation and characterization of human blood platelet mRNA and construction of a cDNA library in lambda gt11. Confirmation of the platelet derivation by identification of GPIb coding mRNA and cloning of a GPIb coding cDNA insert.  Thromb Haemost. 1989;  61 448-453
  • 37 Fink L, Hölschermann H, Kwapiszewska G et al.. Characterization of platelet-specific mRNA by real-time PCR after laser-assisted microdissection.  Thromb Haemost. 2003;  90 749-756
  • 38 Zhu Y, Machleder E, Chenchik A et al.. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction.  Biotechniques. 2001;  30 892-897
  • 39 Neilson L, Andalibi A, Kang D et al.. Molecular phenotype of the human oocyte by PCR-SAGE.  Genomics. 2000;  63 13-24
  • 40 Suzuki H, Shibata H, Murakami M et al.. Modulation of angiotensin II type 1 receptor mRNA expression in human blood cells: comparison of platelets and mononuclear leucocytes.  Endocr J. 1995;  42 15-22
  • 41 O'Donnell C, Larson M, Feng D et al.. Genetic and environmental contributions to platelet aggregation: the Framingham heart study.  Circulation. 2001;  103 3051-3056
  • 42 Nimer S D. Essential thrombocythemia: another “heterogeneous disease” better understood?.  Blood. 1999;  93 415-416
  • 43 Kondo T, Okabe M, Sanada M et al.. Familial essential thrombocythemia associated with one-base deletion in the 5′-untranslated region of the thrombopoietin gene.  Blood. 1998;  92 1091-1096
  • 44 Wiestner A, Schlemper R, van der Maas A P et al.. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia.  Nat Genet. 1998;  18 49-52
  • 45 Harrison C N, Gale R E, Machin S J, Linch D C. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications.  Blood. 1999;  93 417-424
  • 46 Brass L, Isaacsohn J, Merikangas K, Robinette C. A study of twins and stroke.  Stroke. 1992;  23 221-223
  • 47 Catto A. Genetic aspects of the hemostatic system in cerebrovascular disease.  Neurology. 2001;  57 S24-S30
  • 48 Gretarsdottir S, Sveinbjornsdottir S, Jonsson H et al.. Localization of a susceptibility gene for common forms of stroke to 5q12.  Am J Hum Genet. 2002;  70 593-603
  • 49 Tournier-Lasserve E. New players in the genetics of stroke.  N Engl J Med. 2002;  347 1711-1712
  • 50 Kritzik M, Savage B, Nugent D et al.. Nucleotide polymorphisms in the alpha2 gene define multiple alleles that are associated with differences in platelet alpha2 beta1 density.  Blood. 1998;  92 2382-2388
  • 51 Kunicki T J, Kritzik M, Annis D, Nugent D. Hereditary variation in platelet integrin alpha2 beta2 density is associated with two silent polymorphisms in the alpha2 gene coding sequence.  Blood. 1997;  89 1939-1943
  • 52 Kunicki T J, Orchekowski R, Annis D, Honda Y. Variability of integrin alpha2 beta1 activity on human platelets.  Blood. 1993;  82 2693-2703
  • 53 Roest M, Banga J, Grobbee D et al.. Homozygosity for 807T polymorphism in alpha(2) subunit of platelet alpha(2) beta(1) is associated with increased risk of cardiovascular mortality in high-rick women.  Circulation. 2000;  102 1645-1650
  • 54 Moshfegh K, Wiullemin W, Redondo M et al.. Association of two silent polymorphisms of platelet glycoprotein Ia/IIa receptor with risk of myocardial infarction: a case-control study.  Lancet. 1999;  353 351-354
  • 55 Roest M, Sixma J, Wu Y et al.. Platelet adhesion to collagen in healthy volunteers is influenced by variation of both alpha(2) beta(1) density and von Willebrand factor.  Blood. 2000;  96 1433-1437
  • 56 Afshar-Kharghan V, Li C. Kozak sequence polymorphism of glycoprotein (GP) Ibalpha gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex.  Blood. 1999;  94 186-191
  • 57 McKee S, Sane D, Deliargyris E. Aspirin resistance in cardiovascular disease: A review of prevalence, mechanisms, and clinical significance.  Thromb Haemost. 2002;  88 711-715

Wadie F BahouM.D. 

Division of Hematology, HSCT15-040

State University of New York at Stony Brook, Stony Brook, NY 11794-8151

Email: wbahou@notes.cc.sunysb.edu