Subscribe to RSS
DOI: 10.1055/s-2004-832679
A Perspective on the New Mechanism of Antidepressants: Neuritogenesis Through Sigma-1 Receptors
Publication History
Publication Date:
17 November 2004 (online)
Sigma receptors were first described as one of the opiate receptor subtypes. Now it is well established that sigma receptors, existing as subtypes sigma-1 and sigma-2, are unique non-opioid receptors which are implicated in higher-ordered brain functions. Sigma-1 receptors have high to moderate affinities for (+)benzomorphans and also many psychotrophic drugs and neurosteroids. Sigma-1 receptor agonists and certain neurosteroids such as dehydroepiandrosterone sulfate (DHEA-S) have antidepressant-like effects in animal behavioral models of depression. The antidepressant-like effect induced by sigma-1 receptor agonists may involve intracellular Ca2+ mobilization such that sigma-1 receptor agonists modulate Ca2+ release from endoplasmic reticulum (ER) in a cytoskeletal protein-dependent manner. In addition, growth factor-induced neurite outgrowth is mediated through sigma-1 receptors, suggesting a role of antidepressants in neuroplasticity. Igmesine (JO1783), OPC-14 523 and SA4503, have recently been developed as sigma-1 agonists and are found to have antidepressant-like activity perhaps with fewer side effects. This article reviews the new potential use of sigma-1 receptor ligands in the treatment of mood disorder.
References
- 1 Martin W R, Eades J A, Thompson R E, Huppler P E, Gilbert P E. The effects of morphine- and nalorphin-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976; 197 517-532
- 2 Su T P. Evidence for sigma opioid receptor: binding of [H3]SKF-10 047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther. 1982; 223 284-290
- 3 Vaupel D B. Naltrexone fails to antagonize the sigma effects of PCP and SKF-10,047 in the dog. Eur J Pharmacol. 1983; 92 269-274
- 4 Su T -P. HR 375: A potential antipsychotic drug that interacts with dopamine D2 receptors and sigma receptors in the brain. Neurosci Lttr. 1986; 71 224-228
- 5 Shannon H E. Phencyclidine-like discriminative stimuli of (+)- and (-)-N-allylnormetazocine in rats. Eur J Pharmacol. 1982; 84 225-228
- 6 Zukin S R, Brady K T, Silfer BL and Balster R L. Behavioral and biochemical stereoselectivity of sigma opiate/PCP receptors. Brain Res. 1984; 294 74-177
- 7 McCann D J, Su T P. Haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (σ sites) exhibit an unique distribution in rat brain subcellular fractions. Eur J Pharmacol. 1990; 188 211-218
- 8 Quirion R, Chicheportiche R, Contrras P C, Johnson K M, Lodge D, Tam S W, Woods J H, Zukin S R. Classification and nomenclature of phencyclidine and sigma receptor sites. Trends Pharmacol Sci. 1987; 10 444-446
- 9 Walker J M, Bowen W D, Walker F O, Matsumoto R R, Costa BD and Rice K C. Sigma receptors: Biology and function. Pharmacol Rev. 1990; 42 355-402
- 10 Quirion R, Bowen W D, Itzhak Y, Junien J L, Musacchio J M, Rothman R B, Su T P, Tam SW and Tayllor D P. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci. 1992; 13 85-86
- 11 Hellewell S B, Bowen W D. A sigma-like binding site in rat phenochromocytoma (PC12) cells: Decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res. 1990; 527 244-253
- 12 Hanner M, Moebius F F, Fladoefer A, Knaus H G, Striessnig J, Kempner E, Glossmann H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA. 1996; 93 8072-8077
- 13 Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the σ1 receptor in the adult rat central nervous system. Neuroscience. 2000; 97 155-170
- 14 Palacios G, Muro A, Vela J M, Molina-Holgado E, Guitart X, Ovalle S, Zamanillo D. Immunohistochemical localization of the σ1-receptor in oligodendrocytes in the rat central nervous system. Brain Res. 2003; 961 92-99
- 15 Hayashi T, and Su T P. Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc Natl Acad Sci USA. 2001; 98 491-496
- 16 Su T P, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem.. 2003; 10 2073-80
- 17 Hayashi T, Maurice T, Su T P. Ca2+ signaling via σ1 receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther. 2000; 293 788-798
- 18 Monnet F P, de Costa B R, Bowen W D. Differentiation of sigma ligand-activated receptor subtypes that modulate NMDA-evoked [3H]-noradrenaline release in rat hippocampalslices. Br J Pharmacol. 1996; 119 65-72
- 19 Nuwayhid S and Werling L. σ1 receptor agonist-mediated regulation of N-methyl-D-aspartate-stimulated [3H]dopamine release is dependent upon protein kinase C. J Pharmacol Exp Ther. 2003; 304 364-369
- 20 Monnet F P, Morin-Surun M P, Leger J, and Comettes L. Protein kinase C-dependent potentiation of intracellular calcium influx by σ1 receptor agonists in rat hippocampal neurons. J Pharmacol Exp Ther. 2003; 307 705-712
- 21 Bermack J E, Debonnel G. Modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands. Br J Pharmacology. 2001; 134 691-696
- 22 Walker J M, Bowen W D, Walker F O, Matsumoto R R, De Costa B, Rice K C. Sigma receptors: biology and function. Pharmacol Rev. 1990; 42 355-402
- 23 Su T P, London E D, Jaffe J H. Steroid binding at σ receptors suggests a link between endocrine, nervous, and immune systems. Science. 1988; 240 219-221
- 24 Narita N, hashimoto K, Tomitaka S, Minabe Y. Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors in rat brain. Eur J Pharmacology. 1996; 307 117-119
- 25 Shirayama Y, Takahashi K, Nishikawa T. Uncompetitive inhibition of [3H]1,3-di-o-tolyl-guanidinepdefined s binding sites by desipramine, propranolol and alprenolol in rat brain. Eur J Pharmacology. 1997; 331 319-323
- 26 Rao T S, Cler J A, Mick S J, Dilworth V M, Contreras P C, Iyengar S, Wood P L. Neurochemical characterization of dopaminergic effects of opipramol, a potent sigma receptor ligand, in vivo. Neuropharmacology. 1990; 12 1191-1197
- 27 Largent B L, Wikstrom H, Gundlach A L, Snyder S H. Structural determinants of σ receptor affinity. J Pharmacol Exp Therapeutics. 1987; 32 772-784
- 28 Itzhak Y, Stein I, Zhang S -H, Kassim CO and Cristante D. Binding of σ-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of σ-receptor subtypes. J Pharmacol Exp Therapeutics. 1991; 257 141-148
- 29 Gobbi M, Moia M, Pirona L, Morizzoni P, Mennini T. In vivo binding studies with two hypericum perforatum extracts - hyperforin, hypericin and biapigenin - on 5-HT6, 5-HT7, GABA(A)/benzodiazepine, sigma, NPY-Y1/Y2 receptors and dopamine trasporters. Pharmacopsychiatry. 2001; 34 45-48
-
30 Leonard B E. The potential contribution of sigma receptors to antidepressant actions.
In: Antidepressants: New Pharmacological Strategies . Ed. Skolnick P Humana Press Totowa; 1997: pp 159-172 -
31 Baulieu E E, Robel P, Schumacher M. Neurosteroids: from definition and biochemistry to physiopathologic function. In: Baulieu EE, Robel P, Schumacher M. editors
Neurosteroids: a new regulatory function in the nervous system . Hamana Press Totowa, New Jersey; 1999: pp. 1-25 - 32 Mellon H, Griffin L D. Neurosteroids: biochemistry and clinical significance. Trends in Endcrinol. Metab.. 2002; 13 35-43
-
33 Klein M, Musacchio J M. Effets of cytochrome P-450 ligands on the binding of [3H]dextrometorphan and sigma ligands to guinea-pig brain. In: Itzhak Y, ed
Sigma Receptors . Academic San Diego, CA; 1994: pp243-262 - 34 Maurice T, Urani A, Phan V -L, Romieu P. The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res Rev. 2001; 37 116-132
- 35 Matsuno K, Kobayashi T, Tanaka M, Mita S. σ1receptor subtype is involved in the relief of behabioral despair in the mouse forced swimming test. Eur J Pharmacol. 1996; 312 267-271
- 36 Tottori K, Miwa T, Uwahodo Y, Yamada S, Nakai M, Oshiro Y, Kikuchi T, Altar C A. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14 523. Neuropharmacology. 2001; 41 976-988
- 37 Ukai M, Maeda H, Nanya Y, Kameyama T, Matsuno K. Beneficial effects of acute and repeated administrations of σ receptor agonists on behavioral despair in mice exposed to tail suspension. Pharmacol Biochem Behav. 1998; 61 247-252
- 38 Urani A, Roman F J, Phan V L, Su T P, Maurice T. The antidepressant-like effect induced by the sigma (1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther. 2001; 298 1269-1279
- 39 Skuza G and Rogoz Z. A potential antidepressant activity of SA4503, a selective sigma1 receptor agonist. Behav Pharmacol. 2002; 13 537-543
- 40 Earley B, Burke M, Leonard B E, Gouret C J, Junien J L. Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor. Brain Res. 1991; 546 282-286
- 41 Matsuno K, Senda T, Kobayashi T, Okamoto K, Nakata K, Mita S. SA4503, a novel cognitive enhancer, with sigma 1 receptor agonistic properties. Behav Brain Res. 1997; 83 221-224
- 42 Tottori K, Miwa T, Uwahodo Y, Yamada S, Oshiro Y and Koga N. Antidepressant effect of OPC-14 523 in the forced swimming test in mice. Jpn J Pharmacol. 1997; 73 59P
- 43 Urani A, Romieu P, Portales-Casamar E, Roman F J, Maurice T. The antidepressant-like effect induced by the sigma (1) receptor agonist igmesine involves modulation of intracellular calcium mobilization. Psychopharmacology. 2002; 163 26-35
- 44 Nestler E J, Barrot M, DiLeone R J, Eisch A J, Gold S J, and Monteggia L M. Neurobiology of depression. Neuron. 2002; 34 13-25
- 45 McEwen B S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000; 886 172-189
- 46 Norrholm S and Ouimet C C. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse. 2001; 42 151-163
- 47 Gombos Z, Spiler A, Cottrell G A, Racine R J, Mcintyre B W. Mossy fiber sprouting induced by repeated electroconvulsive shock seizures. Brain Res. 1999; 844 28-33
- 48 Takebayashi M, Hayashi T, Su T P. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: Implicastions for antidepressants. J Pharmacol Exp Ther. 2002; 303 1227-1237
- 49 Reddy D S, Kaur G, Kulkarni S K. Sigma (σ1) receptor mediated antidepressant-like effects of neurosteroids in the Porsolt forced swim test. NeuroReport. 1998; 9 3069-3073
- 50 Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E, Perez R, Monroy X, Zamanillo D, Guitart X, Montolie L. Generation and phenotypic analysis of sigma receptor type 1 (σ1) knockout mice. Eur J Neurosci. 2003; 18 2188-2196
- 51 van Broekhoven F, Verkes R J. Neurosteroids in depression: a review. Psychopharmacology. 2003; 165 97-110
- 52 Pande A, Geneve J, Scherrer B. Igmesine, a novel sigma ligand, has antidepressant properties. The 21rd Collegium Internationale Neuro-Psychopharmacologicum. 1998; abstract (SM0505) Glasgow;
- 53 George M S, Guidotti A, Rubinow D, Pan B, Mikalauskas K, Post R M. CSF neuroactive steroids in affective disorders:pregnenolone, progesterone, and DBI. Biol Psychiatry. 1994; 35 775-780
- 54 Wang M, Seippel L, Purdy R H, Backstrom T. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5α-pregnane-3,20-dione and 3 α -hydroxy-5 α-pregnan-20-one. J Clin Endocrinol Metab. 1996; 81 1076-1082
- 55 Takebayashi M, Kagaya A, Uchitomi Y, Kugaya A, Muraoka M, Yokota N, Horiguchi J. Yamawaki S. Plasma dehydroepiandrosterone sulfate in major depression. J Neural Transm. 1998; 105 537-542
- 56 Wolkowitz O M, Reus V I, Roberts E, Manfredi F, Chan T, Raum W J, Ormiston S, Johnson R, Canick J, Brizendine L, Weingartner H. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry. 1997; 41 311-318
- 57 Wolkowitz O M, Reus V I, Keebler N, Nelson M, Friedland M, Brizendine L, Roberts E. Double blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry. 1999; 156 646-649
- 58 Bloch M, Schmidt P J, Danaoeau M A, Adams LF Rubinow D R. Dehydroepiandrosterone treatment of midlife dysthymia. Biol Psychiatry. 1999; 45 1531-1541
- 59 Ishiguro H, Ohtsuki T, Toru M, Itokawa M, Aoki J, Shibuya H, Kurumaji A, Okubo Y, Iwawaki A, Ota K, Shimizu H, Hamaguchi H, Arinami T. Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci lett. 1998; 257 45-48
- 60 Uchida N, Ujike H, Nakata K, Takaki M, Nomura A, Katsu T, Tanaka Y, Imamura T, Sakai A, and Kuroda S. No association between the sigma receptor type1 gene and schizophrenia: results of analysis and meta-analysis of case-control studies. BMC Psychiatry 2003: 3-13
- 61 Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, Senda M. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors. Nucl Med Biol. 2000; 27 255-261
- 62 Kawamura K, Ishiwata K, Shimada Y, Kimura Y, Kobayashi T, Matsuno K, Homma Y, Senda M. Preclinical evaluation of [11C]SA4503: radiation dosimetry, in vivo selectivity and PET imaging of sigma1 receptors in the cat brain. Ann Nucl Med. 2000; 14 285-292
- 63 Ishii K, Ishiwata K, Kimura Y, Kawamura K, Oda K, Senda M. Mapping of sigma1 receptors in living human brain. Neuroimage. 2001; 6 S984
Tsung-Ping Su, Ph. D.
Cellular Pathobiology Unit/Triad Bldg.
IRP/CNBR/NIDA/NIH
5500 Nathan Shock Drive
Baltimore, MD 21224, USA
Phone: (410)-550-6568 ext 117
Fax: (410)-550-1153
Email: TSU@intra.nida.nih.gov