Int J Sports Med 2005; 26: S11-S18
DOI: 10.1055/s-2004-830506
© Georg Thieme Verlag KG Stuttgart · New York

Gas Exchange Measurements with High Temporal Resolution: The Breath-by-Breath Approach

K. Roecker1 , S. Prettin1 , S. Sorichter2
  • 1University of Freiburg, Medical Clinic and Polyclinic, Department of Sports Medicine (Head of Dept.: Prof. Dr. med. H.-H. Dickhuth), Freiburg, Germany
  • 2University of Freiburg, Medical Clinic and Polyclinic, Department of Pneumology (Head of Dept.: Prof. Dr. med. J. Müller-Quernheim), Freiburg, Germany
Further Information

Publication History

Accepted after revision: October 25, 2004

Publication Date:
22 December 2004 (online)

Abstract

Respiratory gas analysis as an indicator for metabolic strain during exercise has a long history. First introduced in the 18th century, huge gas collectors served for the determination of oxidative energy delivery. While still being accepted as accurate, this particular method delivers data of low temporal resolution only. Further developments of gas analysis techniques therefore focused on a higher density of data. When algorithms became available for indispensable calculations, the so-called “breath-by-breath” (BBB) method was established some decades ago. Thereby, the term BBB in the narrower sense means that a particular physiologic value is determined for each of a subject's single respiratory cycles. Reliable application of this approach depends on the performance of available computer systems, the quality of the analyzing software routines, and the responsiveness of the gas analyzers. Thus, it appears that even nowadays technical progress is continuing in this area. This review describes technical aspects and prerequisites of the BBB approach and its specific areas of application.

References

  • 1 Adachi H, Nguyen P H, Belardinelli R, Hunter D, Jung T, Wasserman K. Nitric oxide production during exercise in chronic heart failure.  Am Heart J. 1997;  134 196-202
  • 2 Aliverti A, Kayser B, Macklem P T. Breath-by-breath assessment of alveolar gas stores and exchange.  J Appl Physiol. 2004;  96 1464-1469
  • 3 Auchincloss J H, Gilbert R, Baule G H. Effect of ventilation on oxygen transfer during early exercise.  J Appl Physiol. 1966;  21 810-818
  • 4 Barstow T J, Casaburi R, Wasserman K. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate.  J Appl Physiol. 1993;  75 755-762
  • 5 Barstow T J, Mole P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 6 Beaver W L. Water vapor corrections in oxygen consumption calculations.  J Appl Physiol. 1973;  35 928-931
  • 7 Beaver W L, Lamarra N, Wasserman K. Breath-by-breath measurement of true alveolar gas exchange.  J Appl Physiol. 1981;  51 1662-1675
  • 8 Beaver W L, Wasserman K. Transients in ventilation at start and end of exercise.  J Appl Physiol. 1968;  21 390-399
  • 9 Beaver W L, Wasserman K, Whipp B J. On-line computer analysis and breath-by-breath graphical display of exercise function tests.  J Appl Physiol. 1973;  34 128-132
  • 10 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 11 Boutellier U, Kundig T, Gomez U, Pietsch P, Koller E. Respiratory phase detection and delay determination for breath-by-breath analysis.  J Appl Physiol. 1987;  62 837-843
  • 12 Capelli C, Cautero M, di Prampero P E. New perspectives in breath-by-breath determination of alveolar gas exchange in humans.  Pflugers Arch. 2001;  441 566-577
  • 13 Carter J, Jeukendrup A E. Validity and reliability of three commercially available breath-by-breath respiratory systems.  Eur J Appl Physiol. 2002;  86 435-441
  • 14 Cautero M, di Prampero P E, Capelli C. New acquisitions in the assessment of breath-by-breath alveolar gas transfer in humans.  Eur J Appl Physiol. 2003;  90 231-241
  • 15 Cohen-Solal A, Aupetit J F, Gueret P, Kolsky H, Zannad F. Can anaerobic threshold be used as an end-point for therapeutic trials in heart failure? Lessons from a multicentre randomized placebo-controlled trial. The VO2 French Study Group.  Eur Heart J. 1994;  15 236-241
  • 16 Dickhuth H H, Yin L, Niess A, Roecker K, Mayer F, Heitkamp H C, Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility.  Int J Sports Med. 1999;  20 122-127
  • 17 Duffin J, Whitwam J G. A spirometer for breath-by-breath measurement of VE.  J Physiol. 1971;  212 7-8
  • 18 Farmery A D, Hahn C EW. Response-time enhancement of a clinical gas analyzer facilitates measurement of breath-by-breath gas exchange.  J Appl Physiol. 2000;  89 581-589
  • 19 Fowler W S. The respiratory dead space.  Am J Physiol. 1948;  154 405-416
  • 20 Fukuoka Y, Shigematsu M, Fukuba Y, Koga S, Ikegami H. Dynamics of respiratory response to sinusoidal work load in humans.  Int J Sports Med. 1997;  18 264-269
  • 21 Gaesser G A, Poole D C. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-71
  • 22 Gitt A K, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, Schneider S, Schwarz A, Senges J. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death.  Circulation. 2002;  106 3079-3084
  • 23 Grønlund J. A new method for breath-to-breath determination of oxygen flux across the alveolar membrane.  Eur J Appl Physiol Occup Physiol. 1984;  52 167-172
  • 24 Hill D W, Stephens L P, Blumoff-Ross S A, Poole D C, Smith J C. Effect of sampling strategy on measures of VO2peak obtained using commercial breath-by-breath systems.  Eur J Appl Physiol. 2003;  89 564-569
  • 25 Hoffman G M, Torres A, Forster H V. Validation of a volumeless breath-by-breath method for measurement of respiratory quotient.  J Appl Physiol. 1993;  75 1903-1910
  • 26 Hughson R L, Northey D R, Xing H C, Dietrich B H, Cochrane J E. Alignment of ventilation and gas fraction for breath-by-breath respiratory gas exchange calculations in exercise.  Comput Biomed Res. 1991;  24 118-128
  • 27 Johnson J S, Carlson J J, VanderLaan R L, Langholz D E. Effects of sampling interval on peak oxygen consumption in patients evaluated for heart transplantation.  Chest. 1998;  113 816-819
  • 28 Lambertsen C J, Benjamin Jr J M. Breath-by-breath sampling of end-expiratory gas.  J Appl Physiol. 1959;  14 711-716
  • 29 Linnarsson D, Lindborg B. Breath-by-breath measurement of respiratory gas exchange using on-line analog computation.  Scand J Clin Lab Invest. 1974;  34 219-224
  • 30 Lipsky J A, Angelone A. Breath-by-breath CO2 elimination by analog computer techniques.  Med Res Eng. 1967;  6 11-15
  • 31 Lundin G. Alveolar ventilation (in normal subjects) analyzed breath by breath as nitrogen elimination during oxygen breathing.  Scand J Clin Lab Invest. 1955;  7 39-51
  • 32 Macfarlane D J. Automated metabolic gas analysis systems: a review.  Sports Med. 2001;  31 841-861
  • 33 McArdle W D, Katch F I, Katch V L. Exercise Physiology - Energy, Nutrition and Human Performance. Philadelphia; Lea & Febiger 1986: 565
  • 34 Meyer K, Hajric R, Westbrook S, Samek L, Lehmann M, Schwaibold M, Betz P, Roskamm H. Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems.  Eur J Appl Physiol Occup Physiol. 1996;  72 387-393
  • 35 Meyer K, Westbrook S, Schwaibold M, Hajric R, Peters K, Roskamm H. Short-term reproducibility of cardiopulmonary measurements during exercise testing in patients with severe chronic heart failure.  Am Heart J. 1997;  134 20-26
  • 36 Meyer T, Georg T, Becker C, Kindermann W. Reliability of gas exchange measurements from two different spiroergometry systems.  Int J Sports Med. 2001;  22 593-597
  • 37 Milligan D B, Wilson P F, Mautner M N, Freeman C G, McEwan M J, Clough T J, Sherlock R R. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.  J Environ Qual. 2002;  31 515-524
  • 38 Myers J, Walsh D, Sullivan M, Froelicher V. Effect of sampling on variability and plateau in oxygen uptake.  J Appl Physiol. 1990;  68 404-410
  • 39 Pfitzinger P, Freedson P S. The reliability of lactate measurements during exercise.  Int J Sports Med. 1998;  19 349-357
  • 40 Phillips S M, Green H J, MacDonald M J, Hughson R L. Progressive effect of endurance training on V·O2 kinetics at the onset of submaximal exercise.  J Appl Physiol. 1995;  79 1914-1920
  • 41 Piiper J, Meyer M. Diffusion-perfusion relationships in skeletal muscle: Models and experimental evidence from inert gas washout.  Adv Exp Med Biol. 1984;  169 457-465
  • 42 Rietjens G J, Kuipers H, Kester A D, Keizer H A. Validation of a computerized metabolic measurement system (Oxycon-Pro) during low and high intensity exercise.  Int J Sports Med. 2001;  22 291-294
  • 43 Roecker K, Krieg B, Niess A, Dickhuth H H. Breath by breath measurements for the analysis of exogenous glucose oxidation during intense endurance exercise using (C-13) isotopes.  Int J Sports Med. 1996;  17 480-486
  • 44 Roecker K, Landaw E, Striegel H, Mayer F, Dickhuth H H. First-pass effect of an intravenous bolus of (13 C) bicarbonate displayed breath-by-breath.  J Appl Physiol. 2001;  90 2181-2187
  • 45 Seguin A, Lavoisier A. Premier mémoire sur la respiration des animaux. Histoire de l'Académie des sciences (1789). Dumas J Œuvres de Lavoisier. Mémoires de Chimie et de Physique. Paris; Imprimerie Impériale 1862: 688
  • 46 Sietsema K E, Cooper D M, Perloff J K, Rosove M H, Child J S, Canobbio M M, Whipp B J, Wasserman K. Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease.  Circulation. 1986;  73 1137-1144
  • 47 Smith D, Spanel P. The novel selected-ion flow tube approach to trace gas analysis of air and breath.  Rapid Commun Mass Spectrom. 1996;  10 1183-1198
  • 48 Sue D Y, Hansen J E, Blais M, Wasserman K. Measurement and analysis of gas exchange during exercise using a programmable calculator.  J Appl Physiol. 1980;  49 456-461
  • 49 Sullivan M J, Cobb F R. The anaerobic threshold in chronic heart failure. Relation to blood lactate, ventilatory basis, reproducibility, and response to exercise training.  Circulation. 1990;  81 47-58
  • 50 Wasserman K, Hansen J, Sue D, Whipp B J. Principles of exercise testing and interpretation. Philadelphia; Lea & Febiger 1987
  • 51 Wasserman K, McIllroy M. Detection of anaerobic metabolism in cardiac patients during exercise.  Am J Cardiol. 1964;  14 844-852
  • 52 Wasserman K, Whipp B J. Breath-by-breath analysis of pulmonary gas exchange and the hyperpnea of exercise under non-steady-state and steady-state conditions.  Chest. 1972;  61 46-47
  • 53 Weber K T, Janicki J S, McElroy P A. Determination of aerobic capacity and the severity of chronic cardiac and circulatory failure.  Circulation. 1987;  76 40-45
  • 54 Wessel H U, Stout R L, Bastanier C K, Paul M H. Breath-by-breath variation of FRC: effect on V·O2 and V·CO2 measured at the mouth.  J Appl Physiol. 1979;  46 1122-1126
  • 55 Weston S B, Gabbett T J. Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise.  J Sci Med Sport. 2001;  4 357-366
  • 56 Whipp B J, Ward S A. Physiological determinants of pulmonary gas exchange kinetics during exercise.  Med Sci Sports Exerc. 1990;  22 62-71
  • 57 Whipp B J, Ward S A, Lamarra N, Davis J A, Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise.  J Appl Physiol. 1982;  52 1506-1513
  • 58 Yeh M P, Gardner R M, Adams T D, Yanowitz F G, Crapo R O. “Anaerobic threshold”: problems of determination and validation.  J Appl Physiol. 1983;  55 1178-1186

PD Dr. med. K. Roecker

University of Freiburg · Medical Clinic and Polyclinic · Department of Sports Medicine

Hugstetter Straße 55

79106 Freiburg

Germany

Fax: + 49 76 12 70 74 70

Email: kai.roecker@msm1.ukl.uni-freiburg.de