Subscribe to RSS
DOI: 10.1055/s-2004-829063
Direct Synthesis of Protected Arylacetaldehydes by Palladium-Tetraphosphine-Catalyzed Arylation of Ethyleneglycol Vinylether
Publication History
Publication Date:
01 July 2004 (online)
Abstract
Through the use of [PdCl(C3H5)]2/cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl) cyclopentane as a catalyst, a range of aryl bromides undergo Heck reaction with ethyleneglycol vinylether to give regioselectively protected arylacetaldehydes in good yields. The β-arylation products were obtained in the range 93-98% selectivity with electron-poor aryl bromides. Furthermore, this catalyst can be used at low loading, even for reactions of sterically hindered aryl bromides. The arylvinyl ethers intermediates undergo subsequent ketalization to give the corresponding 2-benzyl-1,3-dioxolane derivatives.
Key words
palladium - catalysis - tetraphosphine - Heck reaction - aryl bromides - ethyleneglycol vinylether - arylacetaldehydes
- For reviews on the palladium-catalyzed Heck reaction see:
-
1a
Heck RF. Palladium Reagents in Organic SynthesesKatritzky AR.Meth-Cohn O.Rees CW. Academic Press; London: 1985. p.2 -
1b
Heck RF. Vinyl Substitution with Organopalladium Intermediates, In Comprehensive Organic SynthesisTrost BM.Fleming I. Pergamon; Oxford: 1991. Vol. 4: -
1c
de Meijere A.Meyer FE. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 -
1d
Malleron J.-L.Fiaud J.-C.Legros J.-Y. Handbook of Palladium-Catalyzed Organic Reactions Academic Press; London: 1997. -
1e
Reetz MT. Transition Metal Catalyzed Reactions Davies S. G., Murahashi S.-I., Blackwell Science; Oxford: 1999. -
1f
Beletskaya I.Cheprakov A. Chem. Rev. 2000, 100: 3009 -
1g
Whitcombe N.Hii KK.Gibson S. Tetrahedron 2001, 57: 7449 - 2
Hallberg A.Westfelt L.Holm B. J. Org. Chem. 1981, 46: 5414 - 3
Andersson C.-M.Hallberg A.Daves D. J. Org. Chem. 1987, 52: 3529 - 4
Herrmann WA.Brossmer C.Reisinger C.Riermeier T.Öfele K.Beller M. Chem.-Eur. J. 1997, 3: 1357 - 5
Littke AF.Fu GC. J. Am. Chem. Soc. 2001, 123: 6989 - 6
Dahan A.Portnoy M. Org. Lett. 2003, 5: 1197 - 7
Cabri W.Candiani I.Bedeschi A.Santi R. Tetrahedron Lett. 1991, 32: 1753 - 8
Cabri W.Candiani I.Bedeschi A.Penco S. J. Org. Chem. 1992, 57: 1481 - 9
Cabri W.Candiani I.Bedeschi A.Santi R. J. Org. Chem. 1993, 58: 7421 - 10
Vallin K.Larhed M.Hallberg A. J. Org. Chem. 2001, 66: 4340 - 11
Xu L.Chen W.Ross J.Xiao J. Org. Lett. 2001, 3: 295 - 12
Chandrasekhar S.Narsihmulu C.Shameem Sultana S.Ramakrishna Reddy N. Org. Lett. 2002, 4: 4399 - 13
Anderson C.-M.Larsson J.Hallberg A. J. Org. Chem. 1990, 55: 5757 - 14
Badone D.Guzzi U. Tetrahedron Lett. 1993, 34: 3603 - 15
Larhed M.Anderson C.-M.Hallberg A. Tetrahedron 1994, 50: 285 - 16
Cabri W.Candiani I. Acc. Chem. Res. 1995, 28: 2 - 17
Larhed M.Hallberg A. J. Org. Chem. 1997, 62: 7858 - 18
Laurenti D.Feuerstein M.Pèpe G.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 1633 - 19
Feuerstein M.Laurenti D.Bougeant C.Doucet H.Santelli M. Chem. Commun. 2001, 325 - 20
Feuerstein M.Berthiol F.Doucet H.Santelli M. Org. Biomol. Chem. 2003, 1: 2235 -
21a
Feuerstein M.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 5923 -
21b
Feuerstein M.Doucet H.Santelli M. Synlett 2001, 1980 -
21c
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 2191 -
21d
Berthiol F.Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 5625 -
21e
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 1221 -
21f
Berthiol F.Doucet H.Santelli M. Synlett 2003, 841 -
21g
Kondolff I.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 8487 - For cyclization of hydroxyalkyl vinyl ethers see:
-
22a
McClelland RA.Watada B.Lew CSQ. J. Chem. Soc., Perkin Trans. 2 1993, 1723 -
22b
Deslongchamps P.Dory YL.Li S. Helv. Chim. Acta 1996, 79: 41
References
As a Typical Experiment: Synthesis of 2-(4-Acetyl-benzyl)-1,3-dioxolane(1d).
The reaction of 4-bromoacetophenone (0.199 g, 1 mmol), K2CO3 (0.276 g, 2 mmol) and ethylene glycol vinylether (0.176 g, 2 mmol) at 130 °C during 20 h in anhyd DMF (5 mL) in the presence of the Tedicyp-palladium complex (0.1 µmol) under argon affords the corresponding coupling product after extraction with Et2O, separation, drying (MgSO4), evaporation and filtration on silica gel (Et2O-/pentane 1:4) in 87% (0.179 g) isolated yield. White solid, mp 55 °C. 1H NMR (300 MHz, CDCl3): δ = 7.90 (d, J = 8.1 Hz, 2 H, Ar), 7.36 (d, J = 8.1 Hz, 2 H, Ar), 5.08 (t, J = 5.1 Hz, 1 H, CH2CH), 3.95-3.80 (m, 4 H, CH
2CH
2), 3.02 (d, J = 5.1 Hz, 2 H, CH
2CH), 2.56 (s, 3 H, Me). 13C NMR (75 MHz, CDCl3): δ = 197.8, 141.7, 135.6, 129.9, 128.3, 103.9, 65.0, 40.6, 26.5. MS: m/z calcd for C12H14O3: 206; found: 206 (19%). Anal. Calcd for C12H14O3: C, 69.88; H, 6.84. Found: C, 69.62; H, 6.63. Before purification, traces of 2-methyl-2-(4-acetylphenyl)-1,3-dioxolane(1e) were also observed: 1H NMR (300 MHz, CDCl3): δ = 7.91 (d, J = 8.3 Hz, 2 H, Ar), 7.55 (d, J = 8.3 Hz, 2 H, Ar), 4.03 (m, 2 H, CH
2CH
2), 3.75 (m, 2 H, CH
2CH
2), 2.57 (s, 3 H, Me), 1.62 (s, 3 H, Me).
All new compounds gave satisfactory 1H NMR, 13C NMR and elemental analysis data.