Horm Metab Res 2004; 36(11/12): 859-866
DOI: 10.1055/s-2004-826176
Review
© Georg Thieme Verlag KG Stuttgart · New York

GIP as a Potential Therapeutic Agent?

J.  J.  Meier1 , M.  A.  Nauck2
  • 1Larry Hillblom Islet Research Center, UCLA School of Medicine, Los Angeles, USA
  • 2Diabeteszentrum Bad Lauterberg, Germany
Further Information

Publication History

Received 17 August 2004

Accepted after revision 22 August 2004

Publication Date:
18 January 2005 (online)

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is released from K-cells in the gut after meal ingestion, and acts in concert with glucagon-like peptide 1 (GLP-1) to augment glucose-stimulated insulin secretion. While derivatives of GLP-1 are under active investigation for the treatment of type 2 diabetes, the case is different for GIP. Indeed, the insulinotropic effect of GIP is almost absent in patients with type 2 diabetes. In addition, the unfavourable pharmacokinetic profile of native GIP obviates its clinical application. Different analogues of GIP exhibiting prolonged stability and enhanced biological potency have been generated in order improve the anti-diabetic properties of GIP. However, glucose-normalisation, as is typically observed during the intravenous administration of GLP-1 in patients with type 2 diabetes, has not yet been achieved with GIP or its derivatives. Since GIP appears to play a role in lipid physiology and elevated levels of GIP have been associated with obesity, antagonising GIP action has been proposed as a therapeutic strategy for obesity. This concept has recently been reinforced by the observation that GIP receptor knock-out mice are protected from high-fat diet-induced obesity. However, eliminating the effect of endogenous GIP may at the same time impair postprandial insulin secretion, thereby severely disturbing glucose homeostasis. Therefore, therapeutic strategies based on either augmenting or antagonising GIP action are far from being established alternatives for the future therapy of type 2 diabetes or obesity.

References

  • 1 Brown J C, Mutt V, Pederson R A. Further purification of a polypeptide demonstrating enterogastrone activity.  J Physiol. 1970;  209 57-64
  • 2 Brown J C, Dryburgh J R. A gastric inhibitory polypeptide II. The complete amino acid sequence.  Can J Biochem. 1971;  49 867-872
  • 3 Brown J C. A Gastric Inhibitory Polypeptide. I. The amino acid composition and the tryptic peptides.  Can J Biochem. 1971;  49 255-261
  • 4 Pederson R A, Brown J C. Inhibition of histamine-, pentagastrin-, and insulin-stimulated canine gastric secretion by pure ‘gastric inhibitory polypeptide’.  Gastroenterology. 1972;  62 393-400
  • 5 Nauck M A, Bartels E, Ørskov C, Ebert R, Creutzfeldt W. Lack of effect of synthetic human gastric inhibitory polypeptide and glucagon-like peptide 1 [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects.  Digestion. 1992;  52 214-221
  • 6 Meier J J, Goetze O, Anstipp J, Hagemann D, Holst J J, Schmidt W E. et al . Gastric inhibitory polypeptide (GIP) does not inhibit gastric emptying in man.  Am J Physiol (Endocrinol Metab). 2004;  286 E621-E625
  • 7 Dupré J, Ross S A, Watson D, Brown J C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man.  J Clin Endocrinol Metab. 1973;  37 826-828
  • 8 Siegel E G, Creutzfeldt W. Stimulation of insulin release in isolated rat islets by GIP in physiological concentrations and its relation to cyclic AMP content.  Diabetologia. 1985;  28 857-861
  • 9 Pederson R A, Brown J C. The insulinotropic action of gastric inhibitory polypeptide in the perfused rat pancreas.  Endocrinology. 1976;  99 780-785
  • 10 Krarup T. Immunoreactive gastric inhibitory polypeptide.  Endocrine Reviews. 1988;  9 122-133
  • 11 Nauck M A, Homberger E, Siegel E G, Allen R C, Eaton R P, Ebert R. et al . Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses.  J Clin Endocrinol Metab. 1986;  63 492-498
  • 12 Pederson R A, Brown J C. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secreton from the perfused rat pancreas.  Endocrinol. 1978;  103 610-615
  • 13 Meier J J, Gallwitz B, Siepmann N, Holst J J, Deacon C F, Schmidt W E. et al . Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia.  Diabetologia. 2003;  46 798-801
  • 14 O’Harte F P, Gray A M, Flatt P R. Gastric inhibitory polypeptide and effects of glycation on glucose transport and metabolism in isolated mouse abdominal muscle.  J Endocrinol. 1998;  156 237-243
  • 15 Service F J, Heiling V J, Go V LW, Rizza R A. Lack of effect of gastric inhibitory polypeptide on hepatic and extrahepatic insulin action.  J Clin Endocrinol Metab. 1990;  70 1398-1402
  • 16 Eckel R H, Fujimoto W Y, Brunzell J D. Gastric inhibitory polypeptide enhance lipoprotein lipase activity in cultured preadipocytes.  Diabetes. 1979;  28 1141-1142
  • 17 Beck B, Max J P. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat.  Regul Pept. 1983;  7 3-8
  • 18 Beck B, Max J P. Hypersensitivity of adipose tissue to gastric inhibitory polypeptide action in obese Zucker rat.  Cell Mol Biol. 1987;  33 555-562
  • 19 Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue.  J Endocrinol. 1991;  130 267-272
  • 20 Wasada T, McCorkle K, Harris V, Kawai K, Howard B, Unger R H. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs.  J Clin Invest. 1981;  68 1107-1110
  • 21 Kindmark H, Pigon J, Efendic S. Glucose-dependent insulinotropic hormone potentiates the hyopglyacemic effect of glibenclamide in healthy volunteers: evidence for an effect on insulin extraction.  J Clin Endocrinol Metab. 2001;  86 2015-2019
  • 22 Meier J J, Gallwitz B, Siepmann N, Holst J J, Deacon C F, Schmidt W E. et al . The reduction in hepatic insulin clearance after oral glucose is not mediated by gastric Inhibitory polypeptide (GIP).  Regul Peptides. 2003;  113 95-100
  • 23 Holst J J. Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1?.  BioDrugs. 2002;  16 175-181
  • 24 Kieffer T J. GIP or not GIP? That is the question.  Trends Pharmacol Sci. 2003;  24 110-112
  • 25 Gault V A, Flatt P R, O’Harte F P. Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes.  Biochem Biophys Res Commun. 2003;  308 207-213
  • 26 Gault V A, O’Harte F P, Flatt P R. Glucose-dependent insulinotropic polypeptide (GIP): anti-diabetic and anti-obesity potential?.  Neuropeptides. 2003;  37 253-263
  • 27 O’Harte F P, Mooney M H, Flatt P R. NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity.  Diabetes. 1999;  48 758-765
  • 28 Hinke S A, Gelling R W, Pederson R A, Manhart S, Nian C, Demuth H U. et al . Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats.  Diabetes. 2002;  51 652-661
  • 29 Gault V A, Harriott P, Flatt P R, O’Harte F PM. GIP analogues substituted at Ala2 exhibit improved plasma stability and insulin-releasing activity (abstract).  Diabetologia. 2001;  44 (Suppl. 1) A195
  • 30 Gault V A, Flatt P R, Bailey C J, Harriott P, Greer B, Mooney M H. et al . Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes.  Biochem J. 2002;  367 913-920
  • 31 Gault V A, Irwin N, Harriott P, Flatt P R, O’Harte F P. DPP IV resistance and insulin releasing activity of a novel di-substituted analogue of glucose-dependent insulinotropic polypeptide, (Ser2-Asp13)GIP.  Cell Biol Int. 2003;  27 41-46
  • 32 Gault V A, Flatt P R, Harriott P, Mooney M H, Bailey C J, O’Harte F P. Improved biological activity of Gly2- and Ser2-substituted analogues of glucose-dependent insulinotrophic polypeptide.  J Endocrinol. 2003;  176 133-141
  • 33 Gault V A, O’Harte F P, Harriott P, Flatt P R. Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo.  Metabolism. 2003;  52 679-687
  • 34 O’Harte F P, Gault V A, Parker J C, Harriott P, Mooney M H, Bailey C J. et al . Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: N-acetyl-GIP and pGlu-GIP.  Diabetologia. 2002;  45 1281-1291
  • 35 Gault V A, O’Harte F P, Harriott P, Flatt P R. Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide.  Biochem Biophys Res Commun. 2002;  290 1420-1426
  • 36 Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H. et al . Inhibition of gastric inhibitory polypeptide signaling prevents obesity.  Nat Med. 2002;  8 738-742
  • 37 Elrick H, Stimmler L, Hlad C J, Arai Y. Plasma insulin response to oral and intravenous glucose administration.  J Clin Endocrinol Metab. 1964;  24 1076-1082
  • 38 Shuster L T, Go V LW, Rizza R A, O’Brien P C, Service F J. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans.  Diabetes. 1988;  37 200-203
  • 39 Creutzfeldt W. The incretin concept today.  Diabetologia. 1979;  16 75-85
  • 40 Creutzfeldt W, Ebert R. New developments in the incretin concept.  Diabetologia. 1985;  28 565-573
  • 41 Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in Type 2 (non-insulin-dependent) diabetes.  Diabetologia. 1986;  29 46-54
  • 42 Creutzfeldt W, Nauck M. Gut hormones and diabetes mellitus.  Diabetes/Metab Rev. 1992;  8 149-177
  • 43 Amland P F, Jorde R, Aanderup S, Burhol P G, Giercksky K-E. Effects of intravenously infused porcine GIP on serum insulin, plasma C-peptide, and pancreatic polypeptide in non-insulin-dependent diabetes in the fasting state.  Scand J Gastroenterol. 1985;  20 315-320
  • 44 Jorde R, Burhol P G. The insulinotropic effect of gastric inhibitory polypeptide in non-insulin dependent diabetes.  Ital J Gastroenterol. 1987;  19 76-78
  • 45 Krarup T, Saurbrey N, Moody A J, Kühl C, Madsbad S. Effect of porcine gastric inhibitory polypeptide on ß-cell function in Type I and Type II diabetes mellitus.  Metabolism. 1988;  36 677-682
  • 46 Nauck M A, Heimesaat M M, Ørskov C, Holst J J, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.  J Clin Invest. 1993;  91 301-307
  • 47 Meier J J, Hücking K, Holst J J, Deacon C, Schmiegel W, Nauck M A. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes.  Diabetes. 2001;  50 2497-2504
  • 48 Vilsbøll T, Krarup T, Madsbad S, Holst J J. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients.  Diabetologia. 2002;  45 1111-1119
  • 49 Toft-Nielsen M B, Damholt M B, Madsbad S, Hilstred L M, Hughes T E, Michelsen B K. et al . Determinants of impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients.  J Clin Endocrinol Metab. 2001;  86 3717-3723
  • 50 Vilsbøll T, Krarup T, Deacon C F, Madsbad S, Holst J J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients.  Diabetes. 2001;  50 609-613
  • 51 Crockett S E, Mazzaferri E L, Cataland S. Gastric inhibitory polypeptide (GIP) in maturity-onset diabetes mellitus.  Diabetes. 1976;  25 931-935
  • 52 Ross S A, Brown J C, Dupré J. Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus.  Diabetes. 1977;  26 525-529
  • 53 Jones I R, Owens D R, Luzio S, Williams S, Hayes T M. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus.  Diabetologia. 1989;  32 668-677
  • 54 Amlind K, Ambye L, Urhammer S A, Hansen T, Echwald S M, Holst J J. et al . Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell response and functional expression studies in Chinese hamster fibroblast cells.  Diabetologia. 1998;  41 1194-1198
  • 55 Kubota A, Yamada Y, Hayami T, Yasuda K, Ihara Y, Kagimoto S. et al . Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects.  Diabetes. 1996;  45 1701-1705
  • 56 Holst J J, Gromada J, Nauck M A. The pathogenesis of NIDDM involves a defective expression of the GIP receptor.  Diabetologia. 1997;  40 984-986
  • 57 Lynn P C, Pamir N, Ng E H, McIntosh C H, KiefferŽ T J, Pederson R A. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats.  Diabetes. 2001;  50 1004-1011
  • 58 Lynn F C, Thompson S A, Pospisilik J A, Ehses J A, Hinke S A, Pamir N. et al . A novel pathway for regulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta cells.  Faseb J. 2003;  17 91-93
  • 59 Meier J J, Nauck M A, Schmidt W E, Gallwitz B. Gastric inhibitory polypeptide (GIP): the neglected incretin revisited.  Regul Peptides. 2002;  107 1-13
  • 60 Butler A E, Janson J, Bonner-Weir S, Ritzel R, Rizza R A, Butler P C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.  Diabetes. 2003;  52 102-110
  • 61 Siegel E G, Schulze A, Schmidt W E, Creutzfeldt W. Comparison of the effect of GIP and GLP-1 (7-36amide) on insulin release from rat pancreatic islets.  Eur J Clin Invest. 1992;  22 154-157
  • 62 Pederson R A, Schubert H E, Brown J C. Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog.  Diabetes. 1975;  24 1050-1056
  • 63 Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y. et al . Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice.  Proc Natl Acad Sci. 1999;  96 14843-14847
  • 64 Elahi D, Raizes G S, Andres R, Hershcopf R J, Muller D C, Tobin J D. et al . Interaction of arginine and gastric inhibitory polypeptide on insulin release in man.  Am J Physiol. 1982;  242 E343-E351
  • 65 Nauck M A, Bartels E, Ørskov C, Ebert R, Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations.  J Clin Endocrinol Metab. 1993;  76 912-917
  • 66 Meier J J, Nauck M A, Siepmann N, Greulich M, Holst J J, Deacon C F. et al . Similar insulin secretory response to a GIP bolus injection at euglycemia in first-degree relatives of patients with type 2 diabetes and control subjects.  Metabolism. 2003;  52 1579-1585
  • 67 Nauck M, Schmidt W E, Ebert R, Strietzel J, Cantor P, Hoffmann G. et al . Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man; interactions with glucose, phenylalanine, and cholezystokinin-8.  J Clin Endocrinol Metab. 1989;  69 654-662
  • 68 Ritzel R, Ørskov C, Holst J J, Nauck M A. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-;36 amide] after subcutaneous injection in healthy volunteers. Dose-response-relationships.  Diabetologia. 1995;  38 720-725
  • 69 Fineman M S, Bicsak T A, Shen L Z, Taylor K, Gaines E, Varns A. et al . Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes.  Diabetes Care. 2003;  26 2370-2377
  • 70 Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Horsch D. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling.  Mol Endocrinol. 2001;  15 1559-1570
  • 71 Trümper A, Trümper K, Horsch D. Mechanisms of mitogenic and anti-apoptotic signalling by glucose-dependent insulinotropic polypeptide in beta(INS-1)-cells.  J Endocrinol. 2002;  174 233-246
  • 72 Meier J J, Nauck M A, Kranz D, Holst J J, Deacon C F, Gaeckler D. et al . Secretion, degradation, and elimination of glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP) in patients with chronic renal insufficiency and healthy controls.  Diabetes. 2004;  53 654-662
  • 73 Mentlein R, Gallwitz B, Schmidt W E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum.  Eur J Biochem. 1993;  214 829-835
  • 74 Deacon C F, Nauck M A, Meier J J, Hücking K, Holst J J. Degradation of endogenous and exogenous gastric inhibitory polypeptide (GIP) in healthy and in Type 2 diabetic subjects as revealed using a new assay for the intact peptide.  J Clin Endocrinol Metab. 2000;  85 3575-3581
  • 75 Gault V A, Parker J C, Harriott P, Flatt P R, O’Harte F P. Evidence that the major degradation product of glucose-dependent insulinotropic polypeptide, GIP(3-42), is a GIP receptor antagonist in vivo.  J Endocrinol. 2002;  175 525-533
  • 76 Jones I R, Owens D R, Moody A J, Luzio S D, Morris T, Hayes T M. The effects of glucose-dependent insulinotropic polypeptide infused at physiological concentrations in normal subjects and Type 2 (non-insulin-dependent) diabetic patients on glucose tolerance and B-cell secretion.  Diabetologia. 1987;  30 707-712
  • 77 May J M, Williams R H. The effect of endogenous Gastric Inhibitory Polypeptide on glucose-induced insulin secretion in mild diabetes.  Diabetes. 1978;  27 849-855
  • 78 Nauck M A, Kleine N, Ørskov C, Holst J J, Willms B, Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients.  Diabetologia. 1993;  36 741-744
  • 79 Meier J J, Gallwitz B, Salmen S, Goetze O, Holst J J, Schmidt W E. et al . Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes.  J Clin Endocrinol Metab. 2003;  88 2719-2725
  • 80 Ørskov C, Holst J J, Nielsen O V. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach.  Endocrinology. 1988;  123 2009-2013
  • 81 Wettergren A, Schjoldager B, Mortensen P E, Myhre J, Christiansen J, Holst J J. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man.  Dig Dis Sci. 1993;  38 665-673
  • 82 Nauck M A, Niedereichholz U, Ettler R, Holst J J, Orskov C, Ritzel R. et al . Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans.  Am J Physiol (Endocrinol Metab). 1997;  273 E981-988
  • 83 Lacroix A, Bolté E, Tremblay J, Dupré J, Poitras P, Fournier H. et al . Gastric inhibitory polypeptide-dependent cortisol hypersecretion - a new cause of Cushing’s Syndrome.  N Engl J Med. 1992;  327 974-980
  • 84 Deacon C F, Pridal L, Klarskov L, Olesen M, Holst J J. Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig.  Am J Physiol (Endocrinol Metab). 1996;  271 E458-E464
  • 85 Agersø H, Jensen L B, Elbrønd B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men.  Diabetologia. 2002;  45 195-202
  • 86 Ross S A, Dupré J. Effects of ingestion of triglyceride or galactose on secretion of Gastric Inhibitory Polypeptide and on response to intravenous glucose in normal and diabetic subjects.  Diabetes. 1978;  27 327-333
  • 87 Falko J M, Crockett S E, Cataland S, Mazzaferri E L. Gastric Inhibitory Polypeptide (GIP) stimulated by fat ingestion in man.  J Clin Endocrinol Metab. 1975;  41 260-265
  • 88 Ebert R, Frerichs H, Creutzfeldt W. Impaired feedback control of fat induced gastric inhibitory polypeptide (GIP) secretion by insulin in obesity and glucose intolerance.  Eur J Clin Invest. 1979;  9 129-135
  • 89 Creutzfeldt W, Ebert R, Willms B, Frerichs H, Brown J C. Gastric inhibitory polypeptide (GIP) and insulin in obesity: Increased response to stimulation and defective feedback control of serum levels.  Diabetologia. 1978;  14 15-24
  • 90 Salera M, Giacomoni P, Pironi L, Cornia G, Capelli M, Marini A. et al . Gastric inhibitory polypeptide release after oral glucose: Relationship to glucose intolerance, diabetes mellitus and obesity.  J Clin Endocrinol Metab. 1982;  55 329-336
  • 91 Elahi D, Andersen D K, Muller D C, Tobin J D, Brown J C, Andres R. The enteric enhancement of glucose-stimulated insulin release: the role of GIP in aging, obesity, and non-insulin-dependent diabetes mellitus.  Diabetes. 1984;  33 950-957
  • 92 Marks V. GIP-the obesity hormone. In: James WPT, Parker SW (eds.) Obesity, current approaches. Southampton; Duphar Medical Relations 1988: 13-20
  • 93 Yip R G, Wolfe M M. GIP biology and fat metabolism.  Life Sci. 2000;  66 91-103
  • 94 Yip R GC, Boylan M O, Kieffer T J, Wolfe M M. Functional GIP receptors are present on adipocytes.  Endocrinology. 1998;  139 4004-4007
  • 95 Knapper J M, Puddicombe S M, Morgan L M, Fletcher J M. Investigations into the actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1(7-36)amide on lipoprotein lipase activity in explants of rat adipose tissue.  J Nutr. 1995;  125 183-188
  • 96 Dupré J, Greenidge N, McDonald T J, Ross S A, Rubinstein D. Inhibition of action of glucagon in adipocytes by gastric inhibitory polypeptide.  Metabolism. 1976;  25 1197-1199
  • 97 Ebert R, Nauck M, Creutzfeldt W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride response in rats.  Horm Metab Res. 1991;  23 517-521
  • 98 Ohneda A, Kobayashi T, Hihei J. Effect of enogenous gastric inhibitory polypeptide (GIP) on the removal of triacylglycerol in dogs.  Regul Pept. 1983;  6 25-32
  • 99 Jorde R, Pettersen J E, Burhol P G. Lack of effect of exogenous or endogenous gastric inhibitory polypeptide on the elimination rate of intralipid in man.  Acta Med Scand. 1984;  216 19-23
  • 100 Gault V A, O’Harte F P, Harriot P, Mooney M H, Green B D, Flatt P R. Effects of the novel (Pro(3))GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin.  Diabetologia. 2003;  46 222-230
  • 101 Service F J, Rizza R A, Westland R E, Hall L D, Gerich J E, Go V LW. Gastric inhibitory polypeptide in obesity and diabetes mellitus.  J Clin Endocrinol Metab. 1984;  58 1133-1140
  • 102 Yki-Järvinen H, Taskinen M R, Kovisto V A, Nikkila E A. Response of adipose tissue lipoprotein lipase activity and serum lipoproteins to acute hyperinsulinaemia in men.  Diabetologia. 1984;  27 364-369
  • 103 Vilsbøll T, Krarup T, Madsbad S, Holst J J. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects.  Regul Pept. 2003;  114 115-121
  • 104 Tseng C-C, Kieffer T J, Jarboe L A, Usdin T B, Wolfe M M. Postprandial stimulation of insulin release by glucose-dependent insulinotropic peptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat.  J Clin Invest. 1996;  98 2440-2445
  • 105 Toumilehto J, Lindström J, Eriksson J G, Valle T T, Hämäläinen H, Ilanne-Parikka P. et al . Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med. 2001;  344 1343-1349
  • 106 Knowler W C, Barrett-Connor E, Fowler S E, Hamman R F, Lachin J M, Walker E A. et al . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;  346 393-403
  • 107 Chiasson J L, Josse R G, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.  Lancet. 2002;  359 2072-2077
  • 108 Gerich J E. The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.  Endocrine Rev. 1998;  19 491-503
  • 109 Gutniak M K, Holst J J, Ørskov C, Åhren B, Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus.  N Engl J Med. 1992;  326 1316-1322
  • 110 Flint A, Raben A, Astrup A, Holst J J. Glucagon-like peptide-1 promotes satiety and suppresses energy intake in humans.  J Clin Invest. 1998;  101 515-520
  • 111 Zander M, Madsbad S, Holst J J. GLP-1 for six weeks reduces body weight and improves insulin sensitivity and glycemic control in patients with Type 2 diabetes.  Diabetes. 2001;  50 (Suppl. 2) A31
  • 112 Perfetti R, Zhou J, Doyle M E, Egan J M. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats.  Endocrinology. 2000;  141 4600-4605
  • 113 Hui H, Nourparvar A, Zhao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway.  Endocrinology. 2003;  144 1444-1455
  • 114 Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H. et al . Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.  Endocrinology. 2003;  144 5149-5158
  • 115 Starich G H, Bar R S, Mazzaferri E L. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes.  Am J Physiol. 1985;  249 E603-E607
  • 116 Hauner H, Glatting G, Kaminska D, Pfeiffer E F. Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes.  Ann Nutr Metab. 1988;  32 282-288
  • 117 Kwasowski P K, Tan S, DeSilva M J, Marks V. Increased chylomicronaemia in fed rats given gastric inhibitory polypeptide antibodies (abstract).  Diabetologia. 1984;  27 A300-A301
  • 118 Meier J J, Nauck M A. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide.  Best Pract Res Clin Endocrinol Metab. 2004;  18 587-606

Dr. J. J. Meier

Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine

24-130 Warren Hall · 900 Veteran Avenue · Los Angeles · CA 90095 · USA

Phone: +1 (310) 206 72 36

Fax: +1 (310) 206 53 68

Email: jmeier@mednet.ucla.edu

    >