Horm Metab Res 2004; 36(11/12): 771-774
DOI: 10.1055/s-2004-826162
Review
© Georg Thieme Verlag KG Stuttgart · New York

Physiology of GIP - A Lesson from GIP Receptor Knockout Mice

Y.  Yamada 1 , Y.  Seino 2
  • 1Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
  • 2Kansai-Denryoku Hospital
Further Information

Publication History

Received 5 August 2004

Accepted after revision 19 August 2004

Publication Date:
18 January 2005 (online)

Abstract

A much greater insulin response is observed after oral glucose load than after intravenous injection of glucose. The hormonal factor(s) implicated as transmitters of signals from the gut to pancreatic β-cells was referred to incretin; gastric inhibitory polypeptide or glucose-dependent insulinotropic polypeptide (GIP) is identified as one of the incretins. GIP exerts its effects by binding to its specific receptor, the GIP receptor, which is expressed in various tissues including pancreatic islets, adipose tissue, and brain. However, the physiological role of GIP has been generally thought to stimulate insulin secretion from pancreatic β-cells, and the other actions of GIP have received little attention. We have bred and characterized mice with a targeted mutation of the GIP receptor gene. From these studies, we now know that GIP not only mediates early insulin secretion by acting on pancreatic β-cells, but also links overnutrition to obesity by acting on adipocytes.

References

  • 1 Perley M J, Kipnis D M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects.  J Clin Invest. 1967;  46 1954-1962
  • 2 Creutzfeldt W. The incretin concept today.  Diabetologia. 1979;  16 75-85
  • 3 Pederson R A, Schubert H E, Brown J C. The insulinotropic action of gastric inhibitory polypeptide.  Can J Physiol Pharmacol. 1975;  53 217-223
  • 4 Yamada Y, Hayami T, Nakamura K, Kaisaki P J, Someya Y, Wang C Z, Seino S, Seino Y. Human gastric inhibitory polypeptide receptor: cloning of the gene (GIPR) and cDNA.  Genomics. 1995;  29 773-776
  • 5 Usdin T B, Mezey E, Button D C, Brownstein M J, Bonner T I. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain.  Endocrinology. 1993;  133 2861-2870
  • 6 Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, Kubota A, Fujimoto S, Kajikawa M, Kuroe A, Tsuda K, Hashimoto H, Yamashita T, Jomori T, Tashiro F, Miyazaki J, Seino Y. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice.  Proc Natl Acad Sci USA. 1999;  96 14843-14847
  • 7 Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst J J, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity.  Nat Med. 2002;  8 738-742
  • 8 Pamir N, Lynn F C, Buchan A M, Ehses J, Hinke S A, Pospisilik J A, Miyawaki K, Yamada Y, Seino Y, McIntosh C H, Pederson R A. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis.  Am J Physiol. 2003;  284 E931-939
  • 9 Hansotia T, Baggio L L, Delmeire D, Hinke S A, Yamada Y, Tsukiyama K, Seino Y, Holst J J, Schuit F, Drucker D J. Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors.  Diabetes. 2004;  53 1326-1335
  • 10 Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker D J, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors.  J Clin Invest. 2004;  113 635-645
  • 11 Tsukiyama K, Yamada Y, Miyawaki K, Hamasaki A, Nagashima K, Hosokawa M, Fujimoto S, Takahashi A, Toyoda K, Toyokuni S, Oiso Y, Seino Y. Gastric inhibitory polypeptide is the major insulinotropic factor in KATP null mice.  Eur J Endocrinol. 2004;  151 407-412
  • 12 Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice.  Proc Natl Acad Sci USA. 1998;  95 10 402-10 406
  • 13 Creutzfeldt W, Ebert R, Willms B, Frerichs H, Brown J C. Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels.  Diabetologia. 1978;  14 15-24
  • 14 Flatt P R, Bailey C J, Kwasowski P, Swanston-Flatt S K, Marks V. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice.  Diabetes. 1983;  32 433-435
  • 15 Yip R G, Boylan M O, Kieffer T J, Wolfe M M. Functional GIP receptors are present on adipocytes.  Endocrinology. 1998;  139 4004-4007
  • 16 Eckel R H, Fujimoto W Y, Brunzell J D. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes.  Diabetes. 1979;  28 1141-1142

Y. Yamada, M. D., Ph. D

Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine

54 Shogoin-Kawahara-cho· Sakyo-ku · Kyoto 606-8507 · Japan

Phone: +81 (75) 751-3561

Fax: +81 (75) 751-3677

Email: yamada@metab.kuhp.kyoto-u.ac.jp

    >