Int J Sports Med 2005; 26(6): 420-425
DOI: 10.1055/s-2004-821142
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Acute Prolonged Exercise Reduces Moderately Oxidized LDL in Healthy Men

T. Vuorimaa1 , M. Ahotupa2 , K. Irjala3 , T. Vasankari1 , 2 , 4
  • 1Sport Institute of Finland, Vierumäki, Finland
  • 2Department of Physiology, University of Turku, Turku, Finland
  • 3Department of Clinical Chemistry, Turku University Hospital, Turku,Finland
  • 4Paavo Nurmi Center, Sports Medical Research Unit, Turku, Finland
Further Information

Publication History

Accepted after revision: May 22, 2004

Publication Date:
10 September 2004 (online)

Abstract

We studied the effects of a 2-day walk exercise (6 h + 6 h) on the serum concentration of circulating moderately oxidized LDL (LDL baseline conjugated dienes), lipids (total cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride), antioxidants (α-tocopherol, γ-tocopherol, β-carotene, and ubiquinol-10), and antioxidant potential in serum (S-TRAP) and LDL (LDL-TRAP) in healthy well-trained men. The exercise was performed twice with an interval of 14 days. While 6 h walking the subjects drank 6 cl · kg-1 water which contained either carbohydrate (CHO trial) or placebo (PLA trial). During the 2-day exercise the level of oxidized LDL decreased by 25 % (p = 0.001) in the PLA trial. At the same time serum γ-tocopherol decreased by 20 % (p = 0.049), while the other measured antioxidants remained unchanged and the serum antioxidant potential increased by 22 % (p = 0.018). Serum total cholesterol decreased by 3 % (p = 0.017), serum triglycerides by 22 % (p = 0.001), and LDL-cholesterol by 14 % (p = 0.045). HDL cholesterol increased by 9 % (p = 0.001). The results in the carbohydrate trial were similar to the ones in the PLA trial. The findings suggest that exercise of long duration but of low, non-exhaustive intensity decreases the concentration of circulating oxidized LDL simultaneously with an increase in serum antioxidant potential in healthy trained men. Carbohydrate ingestion during the exercise does not have any further effect on these changes.

References

  • 1 Ahotupa M, Ruutu M, Mäntylä E. Simple methods for quantifying oxidation products and antioxidant potential of low density lipoproteins.  Clin Biochem. 1996;  29 139-144
  • 2 Ahotupa M, Marniemi J, Lehtimäki T, Talvinen K, Raitakari O T, Vasankari T, Viikari J, Luoma J, Ylä-Herttuala S. Baseline diene conjugation in LDL lipids as a direct measure of in vivo LDL oxidation.  Clin Biochem. 1998;  31 257-261
  • 3 Ahotupa M, Vasankari T. Baseline diene conjugation in LDL lipids: An indicator of circulating oxidized LDL.  Free Radic Biol Med. 1999;  27 1141-1150
  • 4 Alessio H M, Goldfarb A H. Lipid peroxidation and scavenger enzymes during exreicise: adaptive response to training.  J Appl Physiol. 1988;  64 1333-1336
  • 5 Brooks G A, Fahey (eds) T. Exercise Physiology. Human Bioenergetics and its Application. New York; Macmillan 1984: 338
  • 6 Davies K JA, Quintanilha A T, Brooks G A, Packer L. Free radicals and tissue damage produced by exercise.  Biochem Biophys Res Commun. 1982;  107 1198-1205
  • 7 Del Maestro R F. An approach to free radicals in medicine and biology.  Acta Physiol Scand Suppl. 1980;  492 153-168
  • 8 Dillard C JR, Litov R E, Savin V M, Dumelin E E, Tappel A L. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation.  J Appl Physiol. 1978;  45 927-932
  • 9 Durstine J L, Haskell W L. Effects of exercise on plasma lipids and lipoproteins.  Exerc Sport Sci Rev. 1994;  22 477-521
  • 10 Ginsburg G S, Agil A, O'Toole M, Rimm E, Douglas P S, Rifai N. Effects of a single bout of ultraendurance exercise on lipid levels and susceptibility of lipids to peroxidation in Triathletes.  JAMA. 1996;  276 221-225
  • 11 Haramäki N, Packer L. Oxidative stress indices in exercise. Sen CK, Packer L, Hänninen O Exercise and Oxygen Toxicity. Amsterdam; Elsevier 1994: 77-87
  • 12 Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?.  Lancet. 1994;  344 721-724
  • 13 Jenkins R R. Free radical chemistry. Relationship to exercise.  Sports Med. 1988;  5 156-170
  • 14 Krezschmar M, Pfeifer G, Machnik G, Klinger W. Glutathione homeostasis and turnover in the totally hepatectomized rat: evidence for a high glutathione export capacity of extrahepatic tissues.  Exp Toxicol Pathol. 1992;  44 273-281
  • 15 Kujala U M, Ahotupa M, Vasankari T, Kaprio J, Tikkanen M J. Low LDL oxidation in veteran endurance athletes.  Scan J Med Sci Sports. 1996;  6 303-308
  • 16 Lovlin R, Cottle W, Pyke I, Kavanagh M, Belcastro A N. Are indices of free radical damage related to exercise intensity?.  Eur J Appl Physiol. 1987;  56 313-316
  • 17 Milne D B, Bottnen J. Retinol, α-tocopherol, lycopene, and alpha- and beta-carotene simultaneously determined in plasma by isocratic liquid chromatography.  Clin Chem. 1986;  32 874-876
  • 18 Mooradian A D, Habib M P, Dickerson F. Effect of simple carbohydrates, casein hydrolylate, and a lipid test meal on ethane exhalation rate.  J Appl Physiol. 1994;  76 1119-1122
  • 19 Pincemail J, Deby C, Camus G, Pirnay F, Bouchezs R, Masseaur M, Courier R. Tocopherol mobilization during intense exercise.  Eur J Appl Physiol. 1988;  57 189-191
  • 20 Pincemail J, Lecomte J, Castiau J P, Collard E, Vasankari T, Cheramy-Bien J P, Limet R, Defraigne J O. Evaluation of autoantibodies against oxidized LDL and antioxidant status in top soccer and basketball players after 4 months of competition.  Free Radic Biol Med. 2000;  28 559-565
  • 21 Salminen A, Vihko V. Lipid peroxidation in exercise myopathy.  Exp Mol Pathol. 1983;  38 380-388
  • 22 Slater T F. Overview of methods used for detecting lipid peroxidation.  Methods Enzymol. 1985;  105 283-293
  • 23 Steinberg D. Antioxidant vitamins and coronary heart disease.  N Engl J Med. 1994;  328 1487-1489
  • 24 Takada M, Ikenoya S, Yuzuriha T, Katayama K. Simultaneous determination of reduced and oxidized ubiquinones.  Methods Enzymol. 1985;  105 147-155
  • 25 Thurnam D J, Davies J A, Crumo B J, Situnayake R D, Davies M. The use of different lipids to express serum tocopherol: lipid ratios for the measurement of vitamin E status.  Ann Clin Biochem. 1986;  23 514-520
  • 26 Vasankari T J, Kujala U M, Vasankari T M, Ahotupa M. Reduced oxidized LDL levels after a 10-month exercise program.  Med Sci Sports Exerc. 1998;  30 1496-1501
  • 27 Vasankari T J, Kujala U M, Vasankari T M, Vuorimaa T, Ahotupa M. Effects of acute prolonged physical exercise on serum and LDL oxidation and antioxidant defences.  Free Radic Biol Med. 1997;  22 509-513
  • 28 Vasankari T J, Kujala U M, Vasankari T M, Vuorimaa T, Ahotupa M. Increased serum and LDL antioxidant potential after antioxidant supplementation in endurance athletes.  Am J Clin Nutr. 1997;  65 1052-1056
  • 29 Vasankari T, Kujala U, Sarna S, Ahotupa M. Effects of ascorbic acid and carbohydrate ingestion on exercise induced oxidative stress.  J Sports Med Phys Fitness. 1998;  38 281-285
  • 30 Viinikka L, Vuori J, Ylikorkala O. Lipid peroxides, prostacyclin, and thromboxane A2 in runners during acute exercise.  Med Sci Sports Exerc. 1984;  16 275-277
  • 31 Weiland H, Seidel D A. Simple specific method for precipitation of low density lipoproteins.  J Lipid Res. 1983;  24 904-909
  • 32 Witztum J L. The oxidation hypothesis of atherosclerosis.  Lancet. 1994;  344 793-795

Timo Vuorimaa

Sport Institute of Finland

Kaskelantic 10

19120 Vierumäki

Finland

Phone: + 358384241004

Fax: + 35 83 84 24 12 08

Email: timo.vuorimaa@vierumaki.fi