Plant Biol (Stuttg) 2004; 6(3): 242-253
DOI: 10.1055/s-2004-820883
Review Article

Georg Thieme Verlag Stuttgart KG · New York

Direct and Indirect Climate Change Effects on Photosynthesis and Transpiration

M. U. F. Kirschbaum1 , 2
  • 1CSIRO Forestry and Forest Products, P.O. Box 4008, Kingston ACT 2604, Australia
  • 2CRC for Greenhouse Accounting, P.O. Box 475, Canberra ACT 2601, Australia
Further Information

Publication History

Publication Date:
14 May 2004 (online)

Abstract

Climate change affects plants in many different ways. Increasing CO2 concentration can increase photosynthetic rates. This is especially pronounced for C3 plants, at high temperatures and under water-limited conditions. Increasing temperature also affects photosynthesis, but plants have a considerable ability to adapt to their growth conditions and can function even at extremely high temperatures, provided adequate water is available. Temperature optima differ between species and growth conditions, and are higher in elevated atmospheric CO2. With increasing temperature, vapour pressure deficits of the air may increase, with a concomitant increase in the transpiration rate from plant canopies. However, if stomata close in response to increasing CO2 concentration, or if there is a reduction in the diurnal temperature range, then transpiration rates may even decrease. Soil organic matter decomposition rates are likely to be stimulated by higher temperatures, so that nutrients can be more readily mineralised and made available to plants. This is likely to increase photosynthetic carbon gain in nutrient-limited systems. All the factors listed above interact strongly so that, for different combinations of increases in temperature and CO2 concentration, and for systems in different climatic regions and primarily affected by water or nutrient limitations, photosynthesis must be expected to respond differently to the same climatic changes.

References

  • 1 Allen L. H.. Plant responses to rising carbon dioxide and potential interactions with air pollutants.  Journal of Environmental Quality. (1990);  19 15-34
  • 2 Arneth A., Lloyd J., Santruckova H., Bird M., Grigoryev S., Kalaschnikov Y. N., Gleixner G., Schulze E. D.. Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration.  Global Biogeochemical Cycles. (2002);  16 1-13
  • 3 Ball J. T., Woodrow I. E., Berry J. A.. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Biggins, J., ed. Progress in Photosynthesis Research, Vol. IV. Dordrecht; Martinus Nijhoff (1987): 221-224
  • 4 Battaglia M., Beadle C., Loughhead S.. Photosynthetic temperature response of Eucalyptus globulus and Eucalyptus nitens. .  Tree Physiology. (1996);  16 81-89
  • 5 Bergh J., Linder S.. Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands.  Global Change Biology. (1999);  5 245-253
  • 6 Bernacchi C. J., Singsaas E. L., Pimentel C., Portis A. R., Long S. P.. Improved temperature response functions for models of Rubisco-limited photosynthesis.  Plant, Cell and Environment. (2001);  24 253-259
  • 7 Berry J., Björkman O.. Photosynthetic response and adaptation to temperature in higher plants.  Annual Review of Plant Physiology. (1980);  31 491-543
  • 8 Berry J. A., Raison J. K.. Responses of macrophytes to temperature. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Physiological Plant Ecology I. Responses to the Physical Environment, Encyclopedia of Plant Physiology, New Series, Vol. 12 A. Berlin, Heidelberg, New York; Springer-Verlag (1982): 277-338
  • 73 Bert D., Leavitt S. W., Dupouey J.-L.. Variations in wood δ13C and water-use efficiency of Abies alba during the last century.  Ecology. (1997);  78 1588-1595
  • 9 Björkman O., Badger M., Armond P. A.. Thermal acclimation of photosynthesis: effect of growth temperature on photosynthetic characteristics and components of the photosynthetic apparatus in Nerium oleander. .  Carnegie Institution Washington Yearbook. (1978);  77 262-282
  • 10 Björkman O., Mooney H. A., Ehleringer J.. Photosynthetic responses of plants from habitats with contrasting thermal environments: comparison of photosynthetic characteristics of intact plants.  Carnegie Institution Washington Yearbook. (1975);  74 743-748
  • 11 Collatz G. J., Berry J. A., Clark J. S.. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future.  Oecologia. (1998);  114 441-454
  • 12 Cubasch U., Meehl G. A., Boer G. J., Stouffer R. J., Dix M., Noda A., Senior C. A., Raper S., Yap K. S.. Projections of future climate change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., eds. Climate Change 2001: The Scientific Basis. IPCC Working Group I, Third Assessment Report. Cambridge, UK; Cambridge University Press (2001): 525-582
  • 13 Cure J. D., Acock B.. Crop responses to carbon dioxide doubling: a literature survey.  Agricultural and Forest Meteorology. (1986);  38 127-145
  • 14 Curtis P. S., Wang X.. A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology.  Oecologia. (1998);  113 299-313
  • 15 Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H., Tu K. P.. Stable isotopes in plant ecology.  Annual Review of Ecology and Systematics. (2002);  33 507-559
  • 16 Drake B. G.. A field study of the effects of elevated CO2 on ecosystem processes in a Chesapeake Bay wetland.  Australian Journal of Botany. (1992);  40 579-595
  • 17 Drake B. G., Gonzalez-Meler M. A., Long S. P.. More efficient plants: a consequence of rising atmospheric CO2?.  Annual Review of Plant Physiology and Plant Molecular Biology. (1997);  48 609-639
  • 18 Duquesnay A., Breda N., Stievenard M., Dupouey J. L.. Changes of tree-ring 13C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century.  Plant, Cell and Environment. (1998);  21 565-572
  • 19 Easterling D. R., Horton B., Jones P. D., Peterson T. C., Karl T. R., Parker D. E., Salinger M. J., Razuvayev V., Plummer N., Jamason P., Folland C. K.. Maximum and minimum temperature trends for the globe.  Science. (1997);  277 364-367
  • 20 Ehleringer J. R., Cerling T. E., Helliker B. R.. C4 photosynthesis, atmospheric CO2 and climate.  Oecologia. (1997);  112 285-299
  • 21 Farquhar G. D., von Caemmerer S.. Modelling of photosynthetic response to environmental conditions. Lange, O. L., Nobel, P. S., Osmond, C. B., and Ziegler, H., eds. Physiological Plant Ecology II. Water Relations and Carbon Assimilation, Encyclopedia of Plant Physiology, New Series, Vol. 12 B. Berlin, Heidelberg, New York; Springer-Verlag (1982): 549-588
  • 22 Farquhar G. D., von Caemmerer S., Berry J.. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.  Planta. (1980);  149 78-90
  • 23 Folland C. K., Karl T. R., Christy J. R., Clarke R. A., Gruza G. V., Jouzel J., Mann M. E., Oerlemans J., Salinger M. J., Wang S.-W.. Observed climate variability and change. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., eds. Climate Change 2001: The Scientific Basis. IPCC Working Group I, Third Assessment Report. Cambridge, UK; Cambridge University Press (2001): 99-181
  • 24 Garcia R. L., Long S. P., Wall G. W., Osborne C. P., Kimball B. A., Nie G. Y., Pinter P. J., Lamorte R. L., Wechsung F.. Photosynthesis and conductance of spring wheat leaves: field response to continuous free-air atmospheric CO2 enrichment.  Plant, Cell and Environment. (1998);  21 659-669
  • 25 Goulden M. L., Wofsy S. C., Harden J. W., Trumbore S. E., Crill P. M., Gower S. T., Fries T., Daube B. C., Fan S.-M., Sutton D. J., Bazzaz A., Munger J. W.. Sensitivity of boreal forest carbon balance to soil thaw.  Science. (1998);  279 214-217
  • 26 Gunderson C. A., Sholtis J. D., Wullschleger S. D., Tissue D. T., Hanson P. J., Norby R. J.. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment.  Plant, Cell and Environment. (2002);  25 379-393
  • 27 Herrick J. D., Thomas R. B.. No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke FACE experiment.  Plant, Cell and Environment. (2001);  24 53-64
  • 28 IPCC .Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, UK; Cambridge University Press (2000)
  • 29 Jarvis P. G., McNaughton K. G.. Stomatal control of transpiration: scaling up from leaf to region.  Advances in Ecological Research. (1986);  15 1-49
  • 30 Karl T. R., Jones P. D., Knight R. W., Kukla G., Plummer N., Razuvayev V., Gallo K. P., Lindseay J., Charlson R. J., Peterson T. C.. A new perspective on recent 1 global warming: asymmetric trends of daily maximum and minimum temperature.  Bulletin of the American Meteorological Society. (1993);  74 1007-1023
  • 31 Kennedy I., Sharratt B.. Model comparisons to simulate soil frost depth.  Soil Science. (1998);  163 636-645
  • 32 Kimball B. A.. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations.  Agronomy Journal. (1983);  75 779-788
  • 33 Kirschbaum M. U. F.. The sensitivity of C3 photosynthesis to increasing CO2 concentration. A theoretical analysis of its dependence on temperature and background CO2 concentration.  Plant, Cell and Environment. (1994);  17 747-754
  • 34 Kirschbaum M. U. F.. CenW, a forest growth model with linked carbon, energy, nutrient and water cycles.  Ecological Modelling. (1999 a);  181 17-59
  • 35 Kirschbaum M. U. F.. Modelling forest growth and carbon storage with increasing CO2 and temperature.  Tellus. (1999 b);  51B 871-888
  • 36 Kirschbaum M. U. F.. Will changes in soil organic matter act as a positive or negative feedback on global warming?.  Biogeochemistry. (2000 a);  48 21-51
  • 37 Kirschbaum M. U. F.. Forest growth and species distributions in a changing climate.  Tree Physiology. (2000 b);  20 309-322
  • 38 Kirschbaum M. U. F., Farquhar G. D.. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng.  Australian Journal of Plant Physiology. (1984);  11 519-538
  • 39 Kouwenberg L. L. R., McElwain J. C., Kurschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H.. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2.  American Journal of Botany. (2003);  90 610-619
  • 40 Long S. P.. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated?.  Plant, Cell and Environment. (1991);  14 729-739
  • 41 Long S. P., Osborne C. P., Humphries S. W.. Photosynthesis, rising atmospheric carbon dioxide concentration and climate change. Breymeyer, A. I., Hall, D. O., Melillo, J. M., and Ågren, G. I., eds. SCOPE 56 - Global Change: Effects on Coniferous Forests and Grasslands. Chichester a.o.; John Wiley and Sons Ltd. (1996): 121-159
  • 42 Luxmoore R. J., Wullschleger S. D., Hanson P. J.. Forest responses to CO2 enrichment and climate warming.  Water, Air, and Soil Pollution. (1993);  70 309-323
  • 43 Male D. H., Granger R. J.. Snow surface energy exchange.  Water Research. (1981);  17 609-627
  • 44 Marshall J. D., Monserud R. A.. Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers.  Oecologia. (1996);  105 13-21
  • 45 Martin P., Rosenberg N., McKenney M. S.. Sensitivity of evapotranspiration in a wheat field, a forest and a grassland to changes in climate and direct effects of carbon dioxide.  Climatic Change. (1989);  14 117-151
  • 46 McGuire A. D., Melillo J. M., Randerson J. T., Parton W. J., Heimann M., Meier R. A., Clein J. S., Kicklighter D. W., Sauf W.. Modelling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: comparisons with measurements of atmospheric carbon dioxide in high latitudes.  Biogeochemistry. (2000);  48 91-114
  • 47 McKenney M. S., Rosenberg N. J.. Sensitivity of some potential evapotranspiration estimation methods to climate change.  Agricultural and Forest Meteorology. (1993);  64 81-110
  • 48 McMurtrie R. E., Comins H. N., Kirschbaum M. U. F., Wang Y.-P.. Modifying existing forest growth models to take account of effects of elevated CO2.  Australian Journal of Botany. (1992);  40 657-677
  • 49 Medlyn B. E., Badeck F. W., De Pury D. G. G., Barton C. V. M., Broadmeadow M., Ceulemans R., De Angelis P., Forstreuter M., Jach M. E., Kellomäki S., Laitat E., Marek M., Philippot S., Rey A., Strassemeyer J., Laitinen K., Liozon R., Portier B., Roberntz P., Wang K., Jarvis P. G.. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters.  Plant, Cell and Environment. (1999);  22 1475-1495
  • 50 Medlyn B. E., Barton C. V. M., Broadmeadow M. S. J., Ceulemans R., De Angelis P., Forstreuter M., Freeman M., Jackson S. B., Kellomäki S., Laitat E., Rey A., Sigurdsson B. D., Strassemeyer J., Wang K., Curtis P. S., Jarvis P. G.. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.  New Phytologist. (2001);  149 247-264
  • 51 Medlyn B. E., Dreyer E., Ellsworth D. E., Forstreuter M., Harley P. C., Kirschbaum M. U. F., LeRoux X., Loustau D., Montpied P., Strassemeyer J., Walcroft A., Wang K. Y.. Temperature response of parameters of a biochemically-based model of photosynthesis. II. A review of experimental data.  Plant, Cell and Environment. (2002);  25 1167-1179
  • 52 Monserud R. A., Marshall J. D.. Time-series analysis of 13C from tree rings. I. Time trends and autocorrelation.  Tree Physiology. (2001);  21 1087-1102
  • 53 Monteith J. L.. Evaporation and environment.  Symposium of the Society for Experimental Biology. (1965);  19 205-234
  • 54 Mooney H. A., Björkman O., Collatz G. J.. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. I. Carbon dioxide exchange characteristics of intact leaves.  Plant Physiology. (1978);  61 406-410
  • 55 Morison J. I. L., Gifford R. M.. Stomatal sensitivity to carbon dioxide and humidity.  Plant Physiology. (1983);  71 789-796
  • 56 Morison J. I. L.. Sensitivity of stomata and water use efficiency to high CO2.  Plant, Cell and Environment. (1985);  8 467-474
  • 57 Pearcy R. W.. Acclimation of photosynthetic and respiratory CO2 exchange to growth temperature in Atriplex lentiformis (Torr.) Wats.  Plant Physiology. (1977);  59 795-799
  • 58 Pearcy R. W., Osteryoung K., Randall D.. Carbon dioxide exchange characteristics of C4 Hawaiian Euphorbia species native to diverse habitats.  Oecologia. (1982);  55 333-341
  • 59 Polley H. W., Norman J. M., Arkebauer T. J., Walter-Shea E. A., Greegor  Jr. D. H., Bramer B.. Leaf gas exchange of Andropogon gerardii Vitman, Panicum virgatum L. and Sorghastrum nutans (L.) Nash in a tallgrass prairie.  Journal of Geophysical Research. (1992);  97 18837-18844
  • 60 Rawson H. M.. Plant responses to temperature under conditions of elevated CO2.  Australian Journal of Botany. (1992);  40 473-490
  • 61 Rundel P. W.. The ecological distribution of C4 and C3 grasses in the Hawaiian islands.  Oecologia. (1980);  45 354-359
  • 62 Rundgren M., Björck S.. Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data.  Earth and Planetary Science Letters. (2003);  213 191-204
  • 63 Saralabai V. C., Vivekanandan M., Babu R. S.. Plant responses to high CO2 concentration in the atmosphere.  Photosynthetica. (1997);  33 7-37
  • 64 Schimel D. S., Parton W. J., Kittel T. G. F., Ojima D. S., Cole C. V.. Grassland biogeochemistry: links to atmospheric processes.  Climatic Change. (1990);  17 13-25
  • 65 Smirnova T. G., Brown J. M., Benjamin S. G., Kim D.. Parameterization of cold-season processes in the MAPS land-surface scheme.  Journal of Geophysical Research. (2000);  105 4077-4086
  • 66 Stähli M., Jansson P. E.. Test of two SVAT snow submodels during different winter conditions.  Agricultural and Forest Meteorology. (1998);  92 29-41
  • 67 Stanhill G., Cohen S.. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences.  Agricultural and Forest Meteorology. (2001);  107 255-278
  • 68 Strand M., Lundmark T., Söderbergh I., Mellander P.-E.. Impact of seasonal air and soil temperature on photosynthesis in Scots pine trees.  Tree Physiology. (2002);  22 839-847
  • 69 Tieszen L. L., Senyimba M. M., Imbamba S. K., Troughton J. H.. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya.  Oecologia. (1979);  37 337-350
  • 70 Urban O.. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses.  Photosynthetica. (2003);  41 9-20
  • 71 Woodward F. I.. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.  Nature. (1987);  327 617-618
  • 72 Wullschleger S. D.. Biochemical limitations to carbon assimilation in C3 plants - a retrospective analysis of A/ci curves from 109 species.  Journal of Experimental Botany. (1993);  44 907-920

M. U. F. Kirschbaum

CSIRO Forestry and Forest Products

P.O. Box 4008

Kingston ACT 2604

Australia

Email: miko.kirschbaum@csiro.au

Guest Editor: F. Loreto

    >