Thorac Cardiovasc Surg 2004; 52(4): 237-248
DOI: 10.1055/s-2004-817843
Review

© Georg Thieme Verlag KG Stuttgart · New York

Biological Bypass in Cardiovascular Surgery

G. Lutter1 , R. Quaden1 , J. Cremer1
  • 1Department of Cardiovascular Surgery, Christian-Albrecht University of Kiel, School of Medicine, Kiel, Germany
Further Information

Publication History

Received January 5, 2004

Publication Date:
04 August 2004 (online)

Abstract

Protein and gene therapy offer a tremendous opportunity to improve the care of critically ill patients with ischemic heart and peripheral artery occlusion disease. With the availability of purified growth factors such as vascular endothelial and fibroblast growth factors (FGF), several experimental and clinical studies provided data, that the growth of capillaries (angiogenesis) and of collateral arteries (arteriogenesis) is not limited to its natural time course. When applied in experimental models and in conjunction with coronary artery bypass operations, FGF in particular, led to a significant increase in endogenous rerouting of blood flow by collateral vessels inside the tissue itself. Thus, the proliferation of preexisting bypassing arterioles could be enhanced therapeutically (biological bypass). The purpose of this review is to discuss the physiological importance of different kinds of cytokines which are able to induce angio- and arteriogenesis in ischemic limbs or the heart. It is outlined that a combination of a sufficient amount of large arterioles and a capillary network are needed to compensate perfusion deficits. Each patient, who has an ischemic area and cannot be conventionally revascularized, is a potential candidate for the biological bypass.

References

  • 1 Ruel M, Sellke F W. Angiogenic protein therapy.  Semin Thorac Cardiovasc Surg. 2003;  15 222-235
  • 2 Cohn W E, Ruel M, Zhang J P, Sellke F W, Johnson R G. Internal thoracic artery flow competition: studies in a canine H-graft model.  Eur J Cardiothorac Surg. 2003;  23 56-59
  • 3 Ruel M, Wu G F, Khan T A, Voisine P, Bianchi C, Li J, Li J, Laham R J, Sellke F W. Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a swine endothelial dysfunction model.  Circulation. 2003;  108 (Suppl 1) II335-340
  • 4 Rohen J W, Lütjen-Drecoll E. Zirkulationssystem. Rohen JW, Lütjen-Drecoll E Funktionelle Histologie. Stuttgart; Schattauer 2000: 147-176
  • 5 Torres Filho I P, Kerger H, Intaglietta M. pO2 measurements in arteriolar networks.  Microvasc Res. 1996;  51 202-212
  • 6 Risau W. Mechanisms of angiogenesis.  Nature. 1997;  386 671-674
  • 7 Schaper W, Buschmann I. Arteriogenesis, the good and the bad of it.  Cardiovasc Res. 1999;  43 835-837
  • 8 Folkman J. Therapeutic angiogenesis in ischemic limbs.  Circulation. 1998;  97 1108-1110
  • 9 Xie Z, Gao M, Batra S, Koyama T. The capillarity of left ventricular tissue of rats subjected to coronary artery occlusion.  Cardiovasc Res. 1997;  33 671-676
  • 10 Schaper W. Coronary collateral development: concepts and hypotheses. Schaper W, Schaper J Collateral Circulation. Dortrecht, Norwell; Kluwer Academic Publishers 1993: 41-64
  • 11 Scholz D, Ito W, Fleming I. et al . Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis).  Virchows Arch. 2000;  436 257-270
  • 12 Zimmermann R, Arras M, Ullmann C. et al . Time course of mitosis and collateral growth following coronary microembolization in the porcine heart.  Cell Tissue Res. 1997;  287 583-590
  • 13 Lutter G, Martin J, Dern P. et al . Evaluation of the indirect revascularization method after 3 months chronic myocardial ischemia.  Eur J Cardiothorac Surg. 2000;  18 38-45
  • 14 Takeshita S, Isshiki T, Ochiai M. et al . Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia.  Circulation. 1998;  98 1261-1263
  • 15 Lee S H, Wolf P L, Escudero R, Deutsch R, Jamieson S W, Thistlethwaite P A. Early expression of angiogenesis factors in acute myocardial ischemia and infarction.  N Engl J Med. 2000;  342 626-633
  • 16 Hasdai D, Barak V, Leibovitz E. et al . Serum basic fibroblast growth factor levels in patients with ischemic heart disease.  Int J Cardiol. 1997;  59 133-138
  • 17 Rohovsky S, Kearney M, Pieczek A. et al . Elevated levels of basic fibroblast growth factor in patients with limb ischemia.  Am Heart J. 1996;  132 1015-1019
  • 18 Fleisch M, Billinger M, Eberli F R, Garachemani A R, Meier B, Seiler C. Physiologically assessed coronary collateral flow and intracoronary growth factor concentrations in patients with 1- to 3-vessel coronary artery disease.  Circulation. 1999;  100 1945-1950
  • 19 Mandriota S J, Pepper M S. Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibrolast growth factor.  J Cell Sci. 1997;  110 2293-2302
  • 20 Resnick N, Collins T, Atkinson W, Bonthron D T, Dewey Jr C F, Gimbrone Jr M A. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element.  Proc Natl Acad Sci USA. 1993;  90 4591-4595
  • 21 Venema R C, Nishida K, Alexander R W, Harrison D G, Murphy T J. Organization of the bovine gene encoding the endothelial nitric oxide synthase.  Biochem Biophys Acta. 1994;  1218 413-420
  • 22 Li C, Xu Q. Mechanical stress-initiated signal tranductions in vascular smooth muscle cells.  Cell Signal. 2000;  12 435
  • 23 Laguens R, Cabeza Meckert P, Crottogini A. Entrance in mitosis of adult cardiomyocytes in ischemic pig hearts after plasmid-mediated rhVEGF165 gene transfer.  Gene Ther. 2002;  9 1676-1681
  • 24 Nabel E G, Plautz G, Nabel G J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall.  Science. 1990;  249 1285-1288
  • 25 Lin S J, Jan K M, Chien S. Temporal and spatial changes in macromolecular uptake in rat thoracic aorta and relation to [3 H]thymidine uptake.  Atherosclerosis. 1990;  85 229-238
  • 26 Acsadi G, Jiao S S, Jani A, Duke D, Williams P, Chong W, Wolff J A. Direct gene transfer and expression into rat heart in vivo.  New Biol. 1991;  3 71-81
  • 27 Jeong J O. et al . Improved expression by cytomegalovirus promoter/enhancer and behavior of vascular endothelial growth factor gene after myocardial injection of naked DNA.  Exp Mol Med. 2002;  34 278-284
  • 28 Morishita R. et al . Recent progress in gene therapy for cardiovascular disease.  Circ J. 2002;  66 1077-1086
  • 29 Santiago F S, Khachigian L M. Nucleic acid based strategies as potential therapeutic tools: mechanistic considerations and implications to restenosis.  J Mol Med. 2001;  79 695-706 [E-pub Sep 22, 2001]
  • 30 Simons M, Edelman E R, Rosenberg R D. Antisense proliferating cell nuclear antigen oligonucleotides inhibit intimal hyperplasia in a rat carotid artery injury model.  J Clin Invest. 1994;  93 2351-2356
  • 31 Zhu N L, Wu L, Liu P X, Gordon E M, Anderson W F, Starnes V A, Hall F L. Downregulation of cyclin G1 expression by retrovirus-mediated antisense gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation.  Circulation. 1997;  96 628-635
  • 32 Qin L, Pahud D R, Ding Y, Bielinska A U, Kukowska-Latallo J F, Baker Jr J R, Bromberg J S. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers.  Hum Gene Ther. 1998;  9 553-560
  • 33 Perletti G, Marras E, Dondi D. Assessment of the biological activity of an improved naked-DNA vector for angiogenesis gene therapy on a novel non-mammalian model.  Int J Mol Med. 2003;  11 691-696
  • 34 Arsic N, Zentilin L, Zacchigna S. Induction of functional neovascularization by combined VEGF and angiopoietin-1 gene transfer using AAV vectors.  Mol Ther. 2003;  7 450-459
  • 35 Harvey B G, Hackett N R, El-Sawy T. et al . Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administered to different organs.  J Virol. 1999;  73 6729-6742
  • 36 Newman K D, Dunn P F, Owens J W. et al . Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia.  J Clin Invest. 1995;  96 2955-2965
  • 37 Eslami M H, Gangadharan S P, Sui X X, Rhynhart K K, Snyder R O, Conte M S. Gene delivery to in situ veins: differential effects of adenovirus and adeno-associated viral vectors.  J Vasc Surg. 2000;  31 1149-1159
  • 38 Baumgartner I, Isner J. Somatic gene therapy in the cardiovascular system.  Annu Rev Physiol. 2001;  63 427-450
  • 39 Carmeliet P, Ferreira V, Breier G. et al . Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele.  Nature. 1996;  380 435-439
  • 40 Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors.  FASEB J. 1999;  13 9-22
  • 41 Gowdak L HW, Poliakova L, Wang X. et al . Adenovirus-mediated VEGF121 gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia.  Circulation. 2000;  102 565-571
  • 42 Schwarz E R, Speakman M T, Patterson M. et al . Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a mycardial infarction model in the rat - angiogenesis and angioma formation.  J Am Coll Cardiol. 2000;  35 1323-1330
  • 43 Lee R J, Springer M L, Blanco-Bose W E. et al . VEGF gene delivery to myocardium. Deleterious effects of unregulated expression.  Circulation. 2000;  102 898-901
  • 44 Eslami M H, Gangadharan S P, Sui X X, Rhynhart K K, Snyder R O, Conte M S. Gene delivery to in situ veins: differential effects of adenovirus and adeno-associated viral vectors.  J Vasc Surg. 2000;  31 1149-1159
  • 45 Takeshita S, Tsurumi Y, Couffinahl T. et al . Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo.  Lab Invest. 1996;  75 487-501
  • 46 Takeshita S, Isshiki T, Ochiai M. et al . Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia.  Circulation. 1998;  98 1261-1263
  • 47 Asahara T, Takahashi T, Matsuda H. et al . VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.  EMBO J. 1999;  18 3964-3972
  • 48 Baumgartner I, Pieczek A, Manor O. et al . Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia.  Circulation. 1998;  97 1114-1123
  • 49 Baumgartner I, Rauh G, Pieczek A. et al . Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor.  Ann Intern Med. 2000;  132 880-884
  • 50 Thurston G, Rudge J S, Ioffe E. et al . Angiopoietin-1 protects the adult vasculature against plasma leakage.  Nat Med. 2000;  6 460-463
  • 51 Pepper M S, Vassalli J D, Orci L, Montesano R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis.  Exp Cell Res. 1993;  204 356-363
  • 52 Brogi E, Wu T, Namiki A, Isner J M. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only.  Circulation. 1994;  90 649-652
  • 53 Stavri G T, Hong Y, Zachary I C. et al . Hypoxia and platelet-derived growth factor-BB synergistically upregulate the expression of vascular endothelial growth in vascular smooth muscle cells.  FEBS Lett. 1995;  358 311-315
  • 54 Khan T A, Sellke F W, Laham R J. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia.  Gene Ther. 2003;  10 285-291
  • 55 Bianchi R, Rodella L, Rezzani R. Cyclosporine A upregulates expression of matrix metalloproteinase 2 and vascular endothelial growth factor in rat heart.  Int Immunopharmacol. 2003;  3 427-433
  • 56 Mehrabi M R. et al . Clinical benefit of prostaglandin E1-treatment of patients with ischemic heart disease: stimulation of therapeutic angiogenesis in vital and infarcted myocardium.  Biomed Pharmacother. 2003;  57 173-178
  • 57 Symes J F, Losordo D W, Vale P R, Lathi K G, Esakof D D, Mayskiy M, Isner J M. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease.  Ann Thorac Surg. 1999;  68 830-836 discussion 836-837
  • 58 Rivard A, Silver M, Chen D. et al . Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF.  Am J Pathol. 1999;  154 355-363
  • 59 Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus.  Circulation. 2000;  102 185-190
  • 60 Couffinhal T, Silver M, Kearney M. et al . Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE -/- mice.  Circulation. 1999;  99 3188-3198
  • 61 Rivard A, Fabre J E, Silver M. et al . Age-dependent impairment of angiogenesis.  Circulation. 1999;  99 111-120
  • 62 Mignatti P, Morimoto T, Rifkin D B. Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner.  Proc Natl Acad Sci USA. 1991;  88 11007-11011
  • 63 Montesano R, Vassalli J D, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro.  Proc Natl Acad Sci USA. 1986;  83 7297-7301
  • 64 Speir E, Tanner V, Gonzalez A M, Farris J, Baird A, Casscell W. Acidic and basic fibroblast growth factors in adult rat heart myocytes. Localization, regulation in culture, and effects on DNA synthesis.  Circ Res. 1992;  71 251-259
  • 65 Sato Y, Rifkin D B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis.  J Cell Biol. 1988;  107 1199-1205
  • 66 Walgenbach K J, Gratas C, Shestak K C, Becker D. Ischaemia-induced expression of bFGF in normal skeletal muscle: A potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle.  Nat Med. 1995;  1 453-459
  • 67 Chen C H, Jiang W, Via D P. et al . Oxidized low-density lipoproteins inhibit endothelial cell proliferation by suppressing basic Fibroblast Growth Factor expression.  Circulation. 2000;  101 171-177
  • 68 Pepper M S, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.  Biochem Biophys Res Commun. 1992;  189 824-831
  • 69 Safi Jr J, DiPaula Jr A F, Riccioni T. et al . Adenovirus-mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the non-ischemic rabbit heart.  Microvasc Res. 2000;  58 238-249
  • 70 Heilmann C, von Samson P, Schlegel K, Attmann T, von Specht B U, Beyersdorf F, Lutter G. Comparison of protein with DNA therapy for chronic myocardial ischemia using fibroblast growth factor-2.  Eur J Cardiothorac Surg. 2002;  22 957-964
  • 71 Ninomiya M, Koyama H, Miyata T, Hamada H, Miyatake S, Shigematsu H, Takamoto S. Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model.  Gene Ther. 2003;  10 1152-1160
  • 72 Schumacher B, Pecher P, von Specht B U, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors. First clinical results of a new treatment of coronary heart disease.  Circulation. 1998;  97 645-650
  • 73 Pecher P, Schumacher B A. Angiogenesis in ischemic human myocardium: clinical results after 3 years.  Ann Thorac Surg. 2000;  69 1414-1419
  • 74 Kastrup J. Therapeutic angiogenesis in ischemic heart disease: gene or recombinant vascular growth factor protein therapy?.  Curr Gene Ther. 2003;  3 197-206
  • 75 Goede V, Brogelli L, Ziche M, Augustin H G. et al . Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1.  Int J Cancer. 1999;  82 765-770
  • 76 Behr T M, Wang X, Aiyar N. et al . Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure.  Circulation. 2000;  102 1315-1322
  • 77 Yoshimura T, Yuhki N, Moore S K, Appella E, Lerman M I, Leonard E J. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE.  FEBS Lett. 1989;  244 487-493
  • 78 Denger S, Jahn L, Wende P. et al . Expression of monocyte chemoattractant protein-1 cDNA in vascular smooth muscle cells: induction of the synthetic phenotype: a possible clue to SMC differentiation in the process of atherogenesis.  Atherosclerosis. 1999;  144 15-23
  • 79 Schaper W. Coronary collateral development: concepts and hypotheses. Schaper W, Schaper J Collateral Circulation. Dortrecht, Norwell; Kluwer Academic Publishers 1993: 41-64
  • 80 Marumo T, Schini-Kerth V B, Busse R. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells.  Diabetes. 1999;  48 1131-1137
  • 81 Wempe F, Lindner V, Augustin H G. Basic fibroblast growth factor (bFGF) regulates the expression of the CC chemokine monocyte chemoattractant protein-1 in autocrine-activated endothelial cells.  Arterioscler Thromb Vasc Biol. 1997;  17 2471-2478
  • 82 Ito W D, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion.  Circ Res. 1997;  80 829-837
  • 83 Heilmann C A, Attmann T, Thiem A, Haffner E, Beyersdorf F, Lutter G. Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DANN for chronic myocardial ischemia.  Eur J Cardiothorac Surg. 2003;  24 785-793
  • 84 Weidner K M, Arakaki N, Hartmann G. et al . Evidence for the identity of human scatter factor and human hepatocyte growth factor.  PNAS. 1991;  88 7001-7005
  • 85 Grant D S, Kleinman H K, Goldberg I D. et al . Scatter factor induces blood vessel formation in vivo.  PNAS. 1993;  90 1937-1941
  • 86 Gherardi E, Gray J, Stoker M, Perryman M, Furlong R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement.  PNAS. 1989;  86 5844-5848
  • 87 Roletto F, Galvani A P, Cristiani C, Valsasina B, Landonio A, Bertolero F. Basic fibroblast growth factor stimulates hepatocyte growth factor/scatter factor secretion by human mesenchymal cells.  J Cell Physiol. 1996;  166 105-111
  • 88 Hayashi S, Morishita R, Nakamura S. et al . Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease.  Circulation. 1999;  100 II301-II308
  • 89 Morishita R, Nakamura S, Hayashi S. et al . Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy.  Hypertension. 1999;  33 1379-1384
  • 90 Aoki M, Morishita R, Taniyama Y. et al . Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets.  Gene Therapy. 2000;  7 417-427
  • 91 Suzuki H. et al . Hepatocyte growth factor and vascular endothelial growth factor in ischaemic heart disease.  Coron Artery Dis. 2003;  14 301-307
  • 92 Li J, Brown L F, Hibberd M G, Grossman J D, Morgan J P, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis.  Am J Physiol. 1996;  270 H1803-1811
  • 93 Van Belle E, Witzenbichler B, Chen D. et al . Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor.  Circulation. 1998;  97 381-390
  • 94 Shyu K G, Manor O, Magner M, Yancopoulos G D, Isner J M. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb.  Circulation. 1998;  98 2081-2087
  • 95 Asahara T, Chen D, Takahashi T. et al . Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization.  Circ Res. 1998;  83 233-240
  • 96 Asahara T, Takahashi T, Matsuda H. et al . VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.  EMBO J. 1999;  18 3964-3972
  • 97 Valenzuela D M, Griffiths J A, Rojas J. et al . Angiopoietins 3 and 4: diverging gene counterparts in mice and humans.  PNAS. 1999;  96 1904-1909
  • 98 Li J, Brown L F, Hibberd M G, Grossman J D, Morgan J P, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis.  Am J Physiol. 1996;  270 H1803-1811
  • 99 Shen H, Clauss M, Ryan J. et al . Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes.  Blood. 1993;  81 2767-2773
  • 100 Sharma H S, Wunsch M, Brand T, Verdouw P D, Schaper W. Molecular biology of the coronary vascular and myocardial responses to ischemia.  J Cardiovasc Pharmacol. 1992;  20 S23-31
  • 101 Chung N A, Makin A J, Lip G Y. Measurement of the soluble angiopoietin receptor tie-2 in patients with coronary artery disease: development and application of an immunoassay.  Eur J Clin Invest. 2003;  33 529-535
  • 102 Baumgartner I, Pieczek A, Manor O. et al . Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia.  Circulation. 1998;  97 1114-1123
  • 103 Frazier O H, March R J, Horvath K A. Transmyocardial revascularization with a carbon dioxide laser in patients with end-stage coronary artery disease.  N Engl J Med. 1999;  341 1021-1028
  • 104 Lutter G, Schwarzkopf J, Lutz C, Martin J, Beyersdorf F. Histologic findings of transmyocardial laser channels after two hours.  Ann Thorac Surg. 1998;  65 1437-1439
  • 105 Lutter G, Martin J, Dern P. et al . Evaluation of the indirect revascularization method after 3 months chronic myocardial ischemia.  Eur J Cardiothorac Surg. 2000;  18 38-45
  • 106 Horvath K A, Chiun E, Maun D C. et al . Up-regulation of vascular endothelial growth factor mRNA and angiogenesis after transmyocardial laser revascularization.  Ann Thorac Surg. 1999;  68 825-829
  • 107 Pelletier M P, Giaid A, Sivaraman S. et al . Angiogenesis and growth factor expression in a model of transmyocadial revascularization.  Ann Thorac Surg. 1998;  66 12-18
  • 108 Chiang B B, Roberts A M, Kashem A M. et al . Chemoreflexes: an experimental study.  Arch Surg. 2000;  135 577-581
  • 109 Morishita R, Nakamura S, Hayashi S. et al . Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy.  Hypertension. 1999;  33 1379-1384
  • 110 Asahara T, Chen D, Takahashi T. et al . Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization.  Circ Res. 1998;  83 233-240
  • 111 Lutter G, Sarai K, Nitzsche E. et al . Evaluation of transmyocardial laser revascularization by following objective parameters of perfusion and ventricular function.  Thorac Cardiov Surg. 2000;  48 79-85
  • 112 Valenzuela D M, Griffiths J A, Rojas J. et al . Angiopoietins 3 and 4: diverging gene counterparts in mice and humans.  PNAS. 1999;  96 1904-1909
  • 113 Tjomsland O, Aaberge L, Almdahl S M. et al . Perioperative cardiac function and predictors for adverse events after transmyocardial laser treatment.  Ann Thorac Surg. 2000;  69 1098-1103
  • 114 Pelletier M P, Giaid A, Sivaraman S. et al . Angiogenesis and growth factor expression in a model of transmyocadial revascularization.  Ann Thorac Surg. 1998;  66 12-18
  • 115 Sayeed-Shah U. et al . Complete reversal of ischemic wall motion abnormalities by combined use of gene therapy with transmyocardial laser revascularization.  J Thorac Cardiovasc Surg. 1998;  116 763-769
  • 116 Heilmann C A, Attmann T, von Samson P, Gobel H, Marme D, Beyersdorf F, Lutter G. Transmyocardial laser revascularization combined with vascular endothelial growth factor 121 (VEGF121) gene therapy for chronic myocardial ischemia - do the effects really add up?.  Eur J Cardiothorac Surg. 2003;  23 74-80
  • 117 Lutter G, Attmann T, Heilmann C, von Samson P, von Specht B, Beyersdorf F. The combined use of transmyocardial laser revascularization (TMLR) and fibroblastic growth factor (FGF-2) enhances perfusion and regional contractility in chronically ischemic porcine hearts.  Eur J Cardiothorac Surg. 2002;  22 753-761
  • 118 Peichev M, Naiyer A J, Pereira D. et al . Expression of VEGFR-2 and AC133 by circulating CD34+ cells identifies a population of functional endothelial precursors.  Blood. 2000;  95 952-958
  • 119 Kalka C, Masuda H, Takahashi T. et al . Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization.  PNAS. 2000;  97 3422-3427
  • 120 Kawamoto A, Gwon H C, Iwaguro H, Yamaguchi J I, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner J M, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia.  Circulation. 2001;  103 634-637
  • 121 Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner J M, Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration.  Circulation. 2002;  105 732-738
  • 122 Pearlman J D, Laham L J, Simons M. Coronary angiogenesis: detection in vivo with MR imaging sensitive to collateral neocirculation - preliminary study in pigs.  Radiology. 2000;  214 801-807
  • 123 Takeshita S, Isshiki T, Mori H. et al . Microangiographic assessment of collateral vessel formation following direct gene transfer of vascular endothelial growth factor in rats.  Cardiovasc Res. 1997;  35 547-552
  • 124 Beighley P E, Thomas P J, Jorgensen S M, Ritman E L. 3 D architecture of myocardial microcirculation in intact rat heart: a study with micro-CT.  Adv Exp Med Biol. 1997;  430 165-175
  • 125 Mills J D, Fischer D, Villanueva F S. Coronary collateral development during chronic ischemia: serial assessment using harmonic myocardial contrast echocardiography.  J Am Coll Cardiol. 2000;  36 618-624
  • 126 Hedman M. et al . Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT).  Circulation. 2003;  107 2677-2683
  • 127 Diaz-Sandoval L J, Losordo D W. Gene therapy for cardiovascular angiogenesis.  Expert Opin Biol Ther. 2003;  3 599-616

M. D. Georg Lutter

Department of Cardiovascular Surgery · Christian-Albrecht University Kiel · School of Medicine

Arnold-Heller-Straße 7

24105 Kiel

Germany

Phone: + 494315974582

Fax: + 49 43 15 97 44 02

Email: lutter@kielheart.uni-kiel.de