Geburtshilfe Frauenheilkd 2004; 64(5): 464-472
DOI: 10.1055/s-2004-817833
Übersicht

Georg Thieme Verlag KG Stuttgart · New York

Perinatale Hirnschädigung: Bedeutung der intrauterinen Infektion

Perinatal Brain Damage: The Significance of Intrauterine InfectionY. Garnier1 , 2 , M. Gantert1 , 2 , R. Berger2
  • 1Universitätsklinikum Aachen, Frauenklinik für Gynäkologie und Geburtshilfe, Aachen
  • 2Klinik für Gynäkologie und Geburtshilfe, Marienhaus Klinikum St. Elisabeth Neuwied, Neuwied
Further Information

Publication History

Eingang Manuskript: 29. August 2003 Eingang revidiertes Manuskript: 31. Dezember 2003

Akzeptiert: 7. Januar 2003

Publication Date:
05 May 2004 (online)

Zusammenfassung

Klinische und epidemiologische Studien weisen auf eine wichtige Rolle perinataler Infektionen in der Genese fetaler und neonataler Schädigungen hin. Eine Chorioamnionitis ist nicht nur von wesentlicher Bedeutung für die Entwicklung einer Frühgeburt, sondern erhöht auch das Risiko perinataler Hirnschäden. Im Vordergrund stehen neben der peri- und intraventrikulären Hirnblutung, insbesondere Läsionen der weißen Hirnsubstanz, die so genannte periventrikuläre Leukomalazie. Diese wird heute als wesentliche Ursache für die spätere Ausbildung einer spastischen Zerebralparese angesehen. Bakterielle Endotoxine und im Körper freigesetzte proinflammatorische Zytokine spielen eine Schlüsselrolle in der Pathogenese der infektionsvermittelten perinatalen Hirnschädigung. Sie verursachen eine schwere Beeinträchtigung der fetalen Herz-Kreislauf-Regulation mit Abfall des zerebralen Sauerstofftransportes, führen zu einer direkten Schädigung der weißen Hirnsubstanz und scheinen das unreife Gehirn gegenüber einer Sauerstoffmangelsituation zu sensibilisieren. Die Aufklärung der pathophysiologischen Mechanismen im Rahmen einer intrauterinen Infektion des Feten könnte entscheidend dazu beitragen, die Inzidenz perinatal erworbener Hirnschäden und somit die Morbidität der betroffenen Kinder zu senken.

Abstract

There is a growing body of evidence from clinical and epidemiological studies that in utero exposure to infection plays an important role in the pathogenesis of fetal or neonatal morbidity leading to cerebral palsy. Thus, after chorioamnionitis the incidence of immature neonates suffering from periventricular white matter damage and peri- or intraventricular hemorrhage is significantly increased. Reports of elevated cytokine levels in both neonatal blood and amniotic fluid in children with cerebral palsy support the notion that cerebral palsy is preceded by a perinatal inflammatory disease. However, the mechanisms that link perinatal infection to cerebral palsy and hypoxic-ischemic encephalopathy have not been fully identified. A variety of studies support the view that proinflammatory cytokines released during intrauterine infection directly cause injury in the immature brain. On the other hand, the susceptibility of the fetus to infection and the type of neurologic sequelae change with gestational age and hence depend in part on the timing of the insult relative to the stage of maturation of both central nervous system and cardiovascular function. In this review article we provide evidence that in-utero exposure to bacterial infection may severely alter fetal cardiovascular function, resulting in dysregulation of cerebral blood flow and subsequent hypoxic-ischemic brain injury.

Literatur

  • 1 Bhushan V, Paneth N, Kiely J L. Impact of improved survival of very low birth weight infants on recent secular trends in the prevalence of cerebral palsy.  Pediatrics. 1993;  91 1094-1100
  • 2 Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. A Review.  Pedriatr Res. 1997;  42 1-8
  • 3 Wu Y W, Colford Jr J M. Chorioamnionitis as a risk factor for cerebral palsy: A metaanalysis.  JAMA. 2000;  284 1417-1424
  • 4 Verma U, Tejani N, Klein S, Reale M R, Beneck D, Figueroa R, Visintainer P. Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate.  Am J Obstet Gynecol. 1997;  176 275-281
  • 5 Grether J K, Nelson K B. Maternal infection and cerbral palsy in infants of normal birth weight.  JAMA. 1997;  278 247-248
  • 6 Leviton A, Paneth N, Reuss M L. et al . Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants.  Pediatr Res. 1999;  46 566-575
  • 7 Yoon B H, Romero R, Park J S, Kim C J, Kim S H, Choi J H, Han T R. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years.  Am J Obstet Gynecol. 2000;  182 675-681
  • 8 Dammann O, Leviton A. Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant.  Semin Pediatr Neurol. 1998;  5 190-201
  • 9 Nelson K B, Dambrosia J M, Grether J K. Neonatal cytokines and coagulation factors in children with cerebral palsy.  Ann Neurol. 1998;  44 665-675
  • 10 Martinez E, Figueroa R, Garry D, Visintainer P, Patel K, Verma U, Sehgal P B, Tejani N. Elevated amniotic fluid interleukin-6 as a predictor of neonatal periventricular leukomalacia and intraventricular hemorrhage.  J Matern Fetal Investig. 1998;  8 101-107
  • 11 Yoon B H, Romero R, Yang S H, Jun J K, Kim I O, Choi J H, Syn H C. Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia.  Am J Obstet Gynecol. 1996;  174 1433-1440
  • 12 Yoon B H, Jun J K, Romero R, Park K H, Gomez R, Choi J H, Kim I O. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1 b, and tumor necrosis factor-a), neonatal brain white matter lesions, and cerebral palsy.  Am J Obstet Gynecol. 1997;  177 19-26
  • 13 Gibbs R S, Blanco J D, Clair St PG. et al . Quantitative bacteriology of amniotic fluid from patients with clinical intraamniotic infection at term.  J Infect Disease. 1989;  45 1-8
  • 14 Newton E R. Chorioamnionitis and intraamniotic infection.  Clin Obstet Gynecol. 1993;  36 795-808
  • 15 Dashe J S, Rogers B B, McIntire D D, Leveno K J. Epidural analgesia and intrapartum fever: placental findings.  Obstet Gynecol. 1999;  93 341-344
  • 16 Gonçalves L F, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity.  Ment Retard Dev Disabil Res Rev. 2002;  8 3-13
  • 17 Thompson P J, Greenough A, Gamsu H R, Nicolaides K H, Philpott-Howard J. Congenital bacterial sepsis in very preterm infants.  J Med Microbiol. 1992;  36 117-120
  • 18 Carroll S G, Papaioannou S, Ntumazah I L, Philpott-Howard J, Nicolaides K H. Lower genital tract swabs in the prediction of intrauterine infection in preterm prelabour rupture of the membranes.  Br J Obstet Gynaecol. 1996;  103 54-59
  • 19 Berger R, Garnier Y. Pathophysiology of perinatal brain damage.  Brain Res Brain Res Rev. 1999;  30 107-134
  • 20 Monaghan D T, Bridges R J, Cotman C W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function for the central nervous system.  Annu Rev Pharmacol Toxicol. 1989;  29 365-402
  • 21 Kristian T, Siesjo B K. Calcium in ischemic cell death.  Stroke. 1998;  29 705-718
  • 22 Gatti S, Bartfai T. Induction of tumor necrosis factor-alpha mRNA in the brain after peripheral endotoxin treatment: comparison with interleukin-1 family and interleukin-6.  Brain Res. 1993;  624 291-294
  • 23 Hillhouse E W, Mosley K. Peripheral endotoxin induces hypothalamic immunoreactive interleukin-1 beta in the rat.  Br J Pharmacol. 1993;  109 289-290
  • 24 Van Dam A M, Bauer J, Tilders F J, Berkenbosch F. Endotoxin-induced appearance of immunoreactive interleukin-1 beta in ramified microglia in rat brain: a light and electron microscopic study.  Neuroscience. 1995;  65 815-826
  • 25 Berger R, Garnier Y, Pfeiffer D, Jensen A. Lipopolysaccharides do not alter energy metabolism and protein synthesis in an in vitro model of fetal cerebral ischemia.  Pediatr Res. 2000;  48 531-535
  • 26 Barone F C, Arvin B, White R F, Miller A, Webb C L, Willette R N, Lysko P G, Feuerstein G Z. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury.  Stroke. 1997;  28 1233-1244
  • 27 Cai Z, Pan Z, Pang Y, Evans O B, Rhodes P G. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration.  Pediatr Res. 2000;  47 64-72
  • 28 Yoon B H, Kim C J, Romero R. et al . Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits.  Am J Obstet Gynecol. 1997;  177 406-411
  • 29 Gilles F H, Averill Jr D R, Kerr C S. Neonatal endotoxin encephalopathy.  Ann Neurol. 1977;  2 49-56
  • 30 Back S A, Volpe J J. Cellular and molecular pathogenesis of periventricular white matter damage.  Ment Retard Dev. 1997;  3 96-107
  • 31 Cammer W, Zhang H. Maturation of oligodendrocytes is more sensitive to TNF alpha than is survival of precursors and immature oligodendrocytes.  J Neuroimmunol. 1999;  97 37-42
  • 32 Selmaj K W, Raine C S. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro.  Ann Neurol. 1988;  23 339-346
  • 33 Feldhaus B, Dietzel I D, Heumann R, Berger R. Effects of Interferon-γ and TNF-α on survival and differentiation of oligodendrocyte progenitors.  J Soc Gynecol Investig. 2003;  in press
  • 34 Eklind S, Mallard C, Leverin A, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury.  Eur J Neuroscience. 2001;  13 1101-1106
  • 35 Coumans A BC, Middelanis J, Garnier Y, Vaihinger H M, Leib S L, von Duering M, Hasaart T HM, Jensen A, Berger R. Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats.  Pediatr Res. 2003;  53 770-775
  • 36 Garnier Y, Coumans A, Jensen A, Berger R, Hasaart T HM. Endotoxemia severely affects circulation during normoxia and asphyxia in immature fetal sheep.  J Soc Gynecol Investig. 2001;  8 134-142
  • 37 Ashwal S, Dale P S, Longo L D. Regional cerebral blood flow: Studies in the fetal lamb during hypoxia, hypercapnia, acidosis, and hypotension.  Pediatr Res. 1984;  18 1309-1316
  • 38 Jensen A, Berger R. Fetal circulatory responses to oxygen lack.  J Dev Physiol. 1991;  16 181-207
  • 39 Jensen A, Lang U, Braems G. Cardiovascular effects of endotoxin and asphyxia in fetal sheep near term. Künzel W, Kirschbaum M Oxygen - Basis of the Regulation of Vital Functions in the Fetus. New York, Berlin; Springer 1992: 156-157
  • 40 Garnier Y, Coumans A BC, Vaihinger H M, von Duering M, Supçun S, Berger R, Hasaart T HM. Low dose endotoxin (LPS) results in substantial umbilico-placental vasoconstriction and discrete neuropathological changes in preterm sheep.  J Soc Gynecol Investig. 2002;  9 72A-73A
  • 41 Coumans A BC, Garnier Y, Supçun S, Berger R, Jensen A, Hasaart T HM. The effects of low dose endotoxin (LPS) on the umbilico-placental circulation in preterm sheep.  Obstet Gynecol. ;  in press
  • 42 Dalitz P, Harding R, Rees S, Cock M L. Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: Possible factors in white matter injury after acute infection.  J Soc Gynecol Investig. 2003;  10 283-290
  • 43 Duncan J R, Cock M L, Scheerlinck J P, Westcott K T, McLean C, Harding R, Rees S M. White matter injury after repeated endotoxin exposure in the preterm ovine fetus.  Pediatr Res. 2002;  52 941-949
  • 44 Gardiner S M, Compton A M, Bennet T, Palmer R MJ, Moncada S. Control of regional blood flow by endothelium derived nitric oxide.  Hypertension. 1990;  15 486-492
  • 45 Green L R, Bennet L, Hanson M A. The role of nitric oxide synthesis in cardiovascular responses to acute hypoxia in the late gestation sheep fetus.  J Physiol. 1996;  497 271-277
  • 46 Harris A P, Helou S, Gleason C A, Traystman R J, Koehler R C. Fetal cerebral and peripheral circulatory responses to hypoxia after nitric oxide synthase inhibition.  Am J Physiol Regul Integr Comp Physiol. 2001;  281 R381-390
  • 47 Iadecola C, Pelligrino D A, Moscowitz M A, Lassen N A. Nitric oxide synthase inhibition and cerebrovascular regulation.  J Cereb Blood Flow Metab. 1994;  14 175-192
  • 48 Northington F J, Tobin J R, Harris A P, Traystman R J, Koehler R C. Developmental and regional differences in nitric oxide synthase activity and blood flow in the sheep brain.  J Cereb Blood Flow Metab. 1997;  17 109-115
  • 49 Smolich J J. NO modulates fetoplacental blood flow distribution and whole body oxygen extraction in fetal sheep.  Am J Physiol. 1998;  274 R1331-1337
  • 50 Coumans A BC, Garnier Y, Supçun S, Jensen A, Hasaart T HM, Berger R. The role of nitric oxide on fetal cardiovascular control during normoxia and acute hypoxia in 0. 75 gestation sheep.  J Soc Gynecol Investig. 2003;  10 275-282
  • 51 Szabo C, Mitchell J A, Thiemermann C, Vane J R. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock.  Br J Pharmacol. 1993;  108 786-792
  • 52 Thiemermann C, Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo.  Eur J Pharmacol. 1990;  182 591-595
  • 53 Thiemermann C, Wu C C, Szabo C, Perretti M, Vane J R. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock.  Br J Pharmacol. 1993;  110 177-182
  • 54 Szabo C, Thiemermann C, Wu C C, Perretti M, Vane J R. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo.  Proc Natl Acad Sci USA. 1994;  91 271-275
  • 55 Kido T, Sawamura T, Hoshikawa H, D'Orleans-Juste P, Denault J B, Leduc R, Kimura J, Masaki T. Processing of proendothelin-1 at the C-terminus of big endothelin-1 is essential for proteolysis by endothelin-converting enzyme-1 in vivo.  Eur J Biochem. 1997;  244 520-526
  • 56 Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1.  Cell. 1994;  78 473-485
  • 57 Matsumura Y, Hisaki K, Takaoka M, Morimoto S. Phosphoramidon, a metalloproteinase inhibitor, suppresses the hypertensive effect of big endothelin-1.  Eur J Pharmacol. 1990;  185 103-106
  • 58 Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells.  Nature. 1988;  332 411-415
  • 59 Li H, Chen S J, Chen Y F, Meng Q C, Durand J, Oparil S, Elton T S. Enhanced endothelin-1 and endothelin receptor gene expression in chronic hypoxia.  J Appl Physiol. 1994;  77 1451-1459
  • 60 Nakamura T, Kasai K, Sekiguchi Y, Banba N, Takahashi K, Emoto T, Hattori Y, Shimoda S. Elevation of plasma endothelin concentrations during endotoxin shock in dogs.  Eur J Pharmacol. 1991;  205 277-282
  • 61 Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T. Pressure enhances endothelin-1 release from cultured human endothelial cells.  Hypertension Dallas. 1995;  25 449-452
  • 62 Docherty C C, Kalmar-Nagy J, Engelen M, Nathanielsz P W. Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep.  Am J Physiol Regulatory Integrative Comp Physiol. 2001;  280 R554-R562
  • 63 Battistini B, Forget M A, Laight D. Potential roles for endothelins in systemic inflammatory response syndrome with a particular relationship to cytokines.  Shock. 1996;  5 167-183
  • 64 Pittet J F, Morel D R, Hemsen A, Gunning K, Lacroix J S, Suter P M, Lundberg J M. Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis.  Ann Surg. 1991;  213 261-264
  • 65 Hemsen A. Biochemical functional characterization of endothelin peptides with special reference to vascular resistance.  Acta Physiol Scand Suppl. 1991;  602 1-61
  • 66 Pernow J, Hemsen A, Lundberg J M. Increased plasma levels of endothelin-like immunoreactivity during endotoxin administration in the pig.  Acta Physiol Scand. 1989;  137 317-318
  • 67 Weitzberg E, Ahlborg G, Lundberg J M. Long-lasting vasoconstriction and efficient regional extraction of endothelin-1 in human splanchnic and renal tissues.  Biochem Biophys Res Commun. 1991;  180 1298-1303
  • 68 Adamson S L, Whiteley K J, Langille B L. Endothelin-1 constricts fetoplacental microcirculation and decreases fetal O2 consumption in sheep.  Am J Physiol. 1996;  270 H16-H23
  • 69 Lundberg J M, Ahlborg G, Hemsen A, Nisell H, Lunell N O, Pernow J, Rudehill A, Weitzberg E. Evidence for release of endothelin-1 in pigs and humans.  J Cardiovasc Pharmacol. 1991;  17 (Suppl) 350-353
  • 70 Curzen N P, Mitchell J A, Jourdan K B, Griffiths M J, Evans T W. Endothelin-1-induced contraction of pulmonary arteries from endotoxemic rats is attenuated by the endothelin-A receptor antagonist, BQ123.  Crit Care Med. 1996;  24 2007-2013
  • 71 Wanecek M, Oldner A, Rudehill A, Sollevi A, Alving K, Weitzberg E. Cardiopulmonary dysfunction during porcine endotoxin shock is effectively counteracted by the endothelin receptor antagonist bosentan.  Shock. 1997;  7 364-370
  • 72 Black S M, Johengen M J, Soiffer S J. Coordinated regulation of genes of the nitric oxide and endothelin pathways during the development of pulmonary hypertension in fetal lambs.  Pediatr Res. 1988;  44 821-830
  • 73 Wong J, Vanderford P A, Fineman J R, Chang R, Soiffer S J. Endothelin-1 produces pulmonary vasodilation in the intact newborn lamb.  Am J Physiol. 1993;  265 H1318-H325
  • 74 Filep J. Endothelin peptides: biological actions and pathophysiological significance in the lung.  Life Sci. 1993;  52 119-133
  • 75 Helset E, Ytrehus K, Tveita T, Kjaeve J, Jorgensen L. Endothelin-1 causes accumulation of leukocytes in the pulmonary circulation.  Circ Shock. 1994;  44 201-209
  • 76 Cheng T H, Shih N L, Chen S Y, Wang D L, Chen J J. Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes.  Cardiovasc Res. 1999;  41 654-662
  • 77 Kenyon S, Boulvain M, Neilson J. Antibiotics for preterm rupture of membranes.  Cochrane Database Syst Rev. 2003;  2 CD001058
  • 78 Kenyon S L, Taylor D J, Tarnow-Mordi Collaborative Group W ;ORACLE. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomised trial. ORACLE Collaborative Group.  Lancet. 2001;  357 979-988
  • 79 Cox S M, Bohman V R, Sherman M L, Leveno K J. Randomized investigation of antimicrobials for the prevention of preterm birth.  Am J Obstet Gynecol. 1996;  174 206-210
  • 80 Gordon M, Samuels P, Shubert P, Johnson F, Gebauer C, Iams J. A randomized, prospective study of adjunctive ceftizoxime in preterm labor.  Am J Obstet Gynecol. 1995;  172 1546-1552
  • 81 Svare J, Langhoff-Roos J, Andersen L F, Kryger-Baggesen N, Borch-Christensen H, Heisterberg L, Kristensen J. Ampicillin-metronidazole treatment in idiopathic preterm labour: a randomised controlled multicentre trial.  Brit J Obstet Gynaecol. 1997;  104 982-987
  • 82 Kenyon S L, Taylor D J, Tarnow-Mordi Collaborative Group W ;ORACLE. Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. ORACLE Collaborative Group.  Lancet. 2001;  357 989-994
  • 83 King J, Flenady V. Prophylactic antibiotics for inhibiting preterm labour with intact membranes.  Cochrane Database Syst Rev. 2002;  4 CD000246

Dr. med. PhD Yves Garnier

Universitätsklinikum Aachen · Frauenklinik für Gynäkologie und Geburtshilfe

Pauwelsstraße 30

52074 Aachen

Email: ygarnier@ukaachen.de