Subscribe to RSS
DOI: 10.1055/s-2004-817796
Georg Thieme Verlag Stuttgart · New York
High Throughput Cryopreservation of 140 000 Physcomitrella patens Mutants
Publication History
Publication Date:
26 March 2004 (online)
Abstract
A high throughput protocol was established to preserve 140 000 mutants of a moss, Physcomitrella patens, a model plant for functional genomics studies, over liquid nitrogen. Regarding the reliable long-term storage of diverse mutant phenotypes, as well as time and cost effectiveness, each working step was optimized: 1) plant preparation, 2) freezing regime, cryogenic conditions, 3) regrowth after thawing. A prerequisite for maximum regrowth was a 1-week preculture of chopped plant material on a supplemented medium prior to freezing. Cryo vials as preculture vessels resulted in identical regrowth rates, compared to petri dishes. The cryo vial type had a significant influence on regrowth rates. A cooling rate of - 1 °C/min down to - 35 °C with a 10 min holding time before transferring plants to - 152 °C was the most suitable freezing regime. This protocol allows a cryopreservation of 1100 plants during a 5-day working week, practicable by one person. For more than 650 cryopreserved mutants a maximum regrowth rate of 100 % was obtained, independently of mutant phenotypes.
Key words
Cryopreservation - functional genomics - germplasm storage - moss - mutant collection - Physcomitrella patens (Hedw.) B.S.G.
References
-
1 Ahrens M..
Funariaceae, Drehmoose. Nebel, M. and Philippi, G., eds. Die Moose Baden-Württembergs, Band 1. Stuttgart; Ulmer Verlag (2000): 491-492 -
2 Bajaj Y. P. S..
Cryopreservation of plant germplasm I. Bajaj, Y. P. S., ed. Biotechnology in Agriculture and Forestry, Vol. 32. Berlin; Springer Verlag (1995): 3-28 -
3 Belcher A. R., Abbott A. J., Hall K. C., Jackson M. B..
Gaseous constituents of cultures in vitro. . Report of the Long Ashton Research Station, UK. (1987): 41 - 4 Benson E. E., Lynch P. T., Jones J.. The use of the iron chelating agent desferrioxamine in rice cell cryopreservation: a novel approach for improving recovery. Plant Science. (1995); 110 249-258
- 5 Berry E. D., Dorsa W. J., Siragusa G. R., Koohmaraie M.. Bacterial cross-contamination of meat during liquid nitrogen immersion freezing. Journal of Food Protection. (1998); 61 1103-1108
- 6 Byers K. B.. Risks associated with liquid nitrogen cryogenic storage systems. Journal of the American Biological Safety Association. (1998); 3 143-146
- 7 Christianson M. L.. A simple protocol for cryopreservation of mosses. The Bryologist. (1998); 101 32-35
- 8 DeProff M. P., Maenen L., Debergh A.. Carbon dioxide and ethylene evolution in the culture atmosphere of Magnolia culture in vitro. . Physiologia Plantarum. (1985); 65 375-379
- 9 Dussert S., Mauro M. C., Engelmann F.. Cryopreservation of grape embryogenic cell suspensions. 2: influence of post-thaw culture conditions and application to different strains. Cryo-Letters. (1992); 13 15-22
- 10 Egener T., Granado J., Guitton M. C., Hohe A., Holtorf H., Lucht J. M., Rensing S., Schlink K., Schulte J., Schween G., Zimmermann S., Rak B., Reski R.. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biology. (2002); 2 6
-
11 Frahm J. P., Frey W..
Musci, Laubmoose. Frahm, J. P. and Frey, W., eds. Moosflora. Stuttgart; Ulmer Verlag (1992): 340 - 12 Frank W. L., Reski R.. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. (2003)
- 13 Girke T., Schmidt H., Zähringer U., Reski R., Heinz E.. Identification of a novel delta 6-acyl group desaturase by targeted gene disruption in Physcomitrella patens. . Plant Journal. (1998); 15 39-48
- 14 Girod P. A., Fu H., Zrӱd J. P., Viestra R. D.. Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26 S proteasome is essential for developmental progression in Physcomitrella patens. . Plant Cell. (1999); 11 1457-1472
- 15 Gould J. H., Murashige T.. Morphogenetic substances released by plant tissue cultures. Plant Cell Tissue and Organ Culture. (1985); 4 298-342
- 16 Grimsley N. H., Withers L. A.. Cryopreservation of cultures of the moss Physcomitrella patens. . Cryo-Letters. (1983); 4 251-258
-
17 Grout B. W. W..
Introduction to the in vitro preservation of plant cells, tissues and organs. Grout, B., ed. Genetic Preservation of Plant Cells in vitro . Berlin; Springer Verlag (1995): 1-20 -
18 Kartha K. K..
Advances in the cryopreservation technology of plant cells and organs. Green, C. E., Somers, D. A., Hackett, W. P., and Biesboer, D. D., eds. Plant Tissue and Cell Culture. New York; Alan R. Liss, Inc. (1987): 447 -
19 Kartha K. K., Engelmann F..
Cryopreservation and germplasm storage. Vasil, I. K. and Thorpe, T. A., eds. Plant Cell and Tissue Culture. Dordrecht; Kluwer Academic Publishers (1994): 195-230 - 20 Nishiyama T., Hiwatashi Y., Sakakibara I., Kato M., Hasebe M.. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis. DNA Research. (2000); 7 9-17
- 21 Pierik R. L. M.. In vitro Cultures of Higher Plants (Pierik, R. L. M., ed.) Dordrecht; Kluwer Academic Publishers (1997): 107-184
- 22 Reed B. M., Dumet D., Denoma J. M., Benson E. E.. Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. Biodiversity and Conservation. (2001); 10 939-949
-
23 Reinhoud P. J., Van Iren F., Kijne J. W..
Cryopreservation of undifferentiated plant cells. Engelmann, F. and Takagi, H., eds Cryopreservation of Tropical Plant Germplasm: Cryopreservation Techniques. Tsukuba; Proceedings of the JIRCAS/IPGRI Joint International Workshop (1998): 97 - 24 Reski R.. Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends in Plant Science. (1998); 3 209-210
- 25 Reski R., Abel W. O.. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta. (1985); 165 354-358
- 26 Ryynänen L. A., Häggman H. M.. Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Reports. (2001); 20 354-360
- 27 Schaefer D. G.. Gene targeting in Physcomitrella patens. . Current Opinion in Plant Biology. (2001); 4 143-150
- 28 Schaefer D. G., Zrӱd J. P.. Efficient gene targeting in the moss Physcomitrella patens. . Plant Journal. (1997); 11 1195-1206
- 29 Strepp R., Scholz S., Kruse S., Speth V., Reski R.. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of the National Academy of Sciences USA. (1998); 95 4368-4373
-
30 Withers L. A..
Cryopreservation of cultured cells and meristems. Vasil, I. K., ed. Cell Culture and Somatic Cell Genetics of Plants, Vol. 2. Orlando; Academic Press, Inc. (1985): 253-316
R. Reski
Plant Biotechnology
University of Freiburg
Schänzlestraße 1
79104 Freiburg
Germany
Email: ralf.reski@biologie.uni-freiburg.de
Section Editor: F. Salamini