Rofo 2004; 176(4): 513-521
DOI: 10.1055/s-2004-812777
Thorax

© Georg Thieme Verlag Stuttgart · New York

Retrospectively ECG-Gated Multi-Detector Row CT of the Chest: Does ECG-Gating Improve Three-Dimensional Visualization of the Bronchial Tree?

Retrospektive EKG-synchronisierte Mehrschicht-CT des Thorax: Verbessert die EKG-Synchronisierung die dreidimensionale Darstellung der Bronchialkammer?T. Schertler1 , S. Wildermuth1 , J. K. Willmann1 , D. W. Crook1 , B. Marincek1 , T. Boehm1
  • 1Department Medical Radiology, Institute of Diagnostic Radiology, University Hospital Zurich, Switzerland
Further Information

Publication History

Publication Date:
16 April 2004 (online)

Zusammenfassung

Ziel: Untersuchung des Einflusses der retrospektiven EKG-Synchronisierung auf die dreidimensionale Darstellung des Bronchialbaumes und die virtuelle Bronchoskopie. Material und Methode: Bei 25 Patienten wurden eine EKG-synchronisierte und eine nicht-EKG-synchronisierte CT-Untersuchung des Thorax durchgeführt. Aus beiden Bilddatensätzen wurde eine dreidimensionale Oberflächenrekonstruktion SSD (shaded surface display) generiert, die für eine virtuelle Bronchoskopie verwendet wurde. Die Darstellbarkeit kleiner Bronchien im 3D-Datensatz wurde durch drei Radiologen verglichen. Die effektive Strahlendosis und das Signal-zu-Rausch-Verhältnis wurden ermittelt. Ergebnisse: Die Visualisierung der einzelnen Segmente des Bronchialbaumes war für die beiden Akquisitionsmethoden nicht signifikant unterschiedlich. Bei Summation der Scores zeigte sich eine signifikant bessere Bronchialbaumvisualisierung mit der nicht-EKG-synchronisierten Akquisitionstechnik (p < 0,05). Die effektive Strahlendosis, aber auch das Signal-zu-Rausch-Verhältnis waren signifikant höher bei der EKG-synchronisierten Akquisition (p < 0,05). Schlussfolgerung: Der Bronchialbaum kann signifikant besser mit nicht-EKG-synchronisierten Datensätzen visualisiert werden. Mit den aktuellen Rekonstruktionsalgorithmen bringt die EKG-synchronisierte Akquisition keinen zusätzlichen Vorteil.

Abstract

Purpose: To determine the impact of retrospectively ECG-gated multi-detector row CT (MDCT) on three-dimensional (3D) visualization of the bronchial tree and virtual bronchoscopy (VB) as compared to non-ECG-gated data acquisition. Materials and Methods: Contrast-enhanced retrospectively ECG-gated and non-ECG-gated MDCT of the chest was performed in 25 consecutive patients referred for assessment of coronary artery bypass grafts and pathology of the ascending aorta. ECG-gated MDCT data were reconstructed in diastole using an absolute reverse delay of - 400 msec in all patients. In 10 patients additional reconstructions at - 200 msec, - 300 msec, and - 500 msec prior to the R-wave were performed. Shaded surface display (SSD) and virtual bronchoscopy (VB) for visualization of the bronchial segments was performed with ECG-gated and non-ECG-gated MDCT data. The visualization of the bronchial tree underwent blinded scoring. Effective radiation dose and signal-to-noise ratio (SNR) for both techniques were compared. Results: There was no significant difference in visualizing single bronchial segments using ECG-gated compared to non-ECG-gated MDCT data. However, the total sum of scores for all bronchial segments visualized with non-ECG-gated MDCT was significantly higher compared to ECG-gated MDCT (P < 0.05). The summary scores for visualization of bronchial segments for different diastolic reconstructions did not differ significantly. The effective radiation dose and the SNR were significantly higher with the ECG-gated acquisition technique (P < 0.05). Conclusion: The bronchial tree is significantly better visualized when using non-ECG-gated MDCT compared to ECG-gated MDCT. Additionally, non-ECG-gated techniques require less radiation exposure. Thus, the current retrospective ECG-gating technique does not provide any additional benefit for 3D visualization of the bronchial tree and VB.

References

  • 1 Jolesz F A, Lorensen W E, Shinmoto H. et al . Interactive virtual endoscopy.  AJR Am J Roentgenol. 1997;  169 1229-1235
  • 2 Kauczor H U, Wolcke B, Fischer B. et al . Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation.  AJR Am J Roentgenol. 1996;  167 419-424
  • 3 Mahesh M. The AAPM/RSNA Physics Tutorial for Residents: Search for isotropic resolution in CT from conventional through multiple-row detector.  Radiographics. 2002;  22 949-962
  • 4 Summers R M, Selbie W S, Malley J D. et al . Polypoid lesions of airways: early experience with computer-assisted detection by using virtual bronchoscopy and surface curvature.  Radiology. 1998;  208 331-337
  • 5 Higgins W E, Ramaswamy K, Swift R D. et al . Virtual bronchoscopy for three-dimensional pulmonary image assessment: state of the art and future needs.  Radiographics. 1998;  18 761-778
  • 6 Rubin G D, Beaulieu C F, Argiro V. et al . Perspective volume rendering of CT and MR images: applications for endoscopic imaging.  Radiology. 1996;  199 321-330
  • 7 Seemann M D, Gebicke K, Luboldt W. et al . [Hybrid 3D rendering of the thorax and surface-based virtual bronchoscopy in surgical and interventional therapy control].  Fortschr Röntgenstr. 2001;  173 650-657
  • 8 Liewald F, Lang G, Fleiter T. et al . Comparison of virtual and fiberoptic bronchoscopy.  Thorac Cardiovasc Surg. 1998;  46 361-364
  • 9 Seemann M D, Heuschmid M, Vollmar J. et al . Virtual bronchoscopy: comparison of different surface rendering models.  Technol Cancer Res Treat. 2003;  2 273-279
  • 10 Jang D P, Han M H, Kim S I. Virtual endoscopy using surface rendering and perspective volume rendering.  Stud Health Technol Inform. 1999;  62 161-166
  • 11 Achenbach S, Giesler T, Ropers D. et al . Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography.  Circulation. 2001;  103 2535-2538
  • 12 Nieman K, Rensing B J, van Geuns R J. et al . Usefulness of multislice computed tomography for detecting obstructive coronary artery disease.  Am J Cardiol. 2002;  89 913-918
  • 13 Willmann J K, Weishaupt D, Lachat M. et al . Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis.  Radiology. 2002;  225 120-128
  • 14 Roos J E, Willmann J K, Weishaupt D. et al . Thoracic aorta: motion artifact reduction with retrospective and prospective electrocardiography-assisted multi-detector row CT.  Radiology. 2002;  222 271-277
  • 15 Yamada K, Soejima T, Minami T. et al . Three-dimensional treatment planning using electrocardiographically gated multi-detector row CT.  Int J Radiat Oncol Biol Phys. 2003;  56 235-239
  • 16 Schoepf U J, Becker C R, Bruening R D. et al . Electrocardiographically gated thin-section CT of the lung.  Radiology. 1999;  212 649-654
  • 17 Montaudon M, Berger P, Blachere H. et al . Thin-section CT of the lung: influence of 0.5-s gantry rotation and ECG triggering on image quality.  Eur Radiol. 2001;  11 1681-1687
  • 18 Rodenwaldt J, Schorn C, Grabbe E. [Virtual endoscopy of the upper airway with spiral CT].  Radiologe. 2000;  40 233-239
  • 19 Ley S, Mayer D, Brook B S. et al . Radiological imaging as the basis for a simulation software of ventilation in the tracheo-bronchial tree.  Eur Radiol. 2002;  12 2218-2228
  • 20 Kalender W A, Schmidt B, Zankl M. et al . A PC program for estimating organ dose and effective dose values in computed tomography.  Eur Radiol. 1999;  9 555-562
  • 21 Remy J, Remy-Jardin M, Artaud D. et al . Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases.  Eur Radiol. 1998;  8 335-351
  • 22 Grenier P A, Beigelman-Aubry C, Fetita C. et al . New frontiers in CT imaging of airway disease.  Eur Radiol. 2002;  12 1022-1044
  • 23 Becker C R, Knez A, Ohnesorge B. et al . Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating.  AJR Am J Roentgenol. 2000;  175 423-424
  • 24 Hong C, Becker C R, Huber A. et al . ECG-gated reconstructed multi- detector row CT coronary angiography: effect of varying trigger delay on image quality.  Radiology. 2001;  220 712-717
  • 25 Jakobs T F, Becker C R, Ohnesorge B. et al . Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation.  Eur Radiol. 2002;  12 1081-1086
  • 26 Achenbach S, Ulzheimer S, Baum U. et al . Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT.  Circulation. 2000;  102 2823-2828
  • 27 Lackner K, Thurn P. Computed tomography of the heart: ECG-gated and continuous scans.  Radiology. 1981;  140 413-420
  • 28 Kachelriess M, Ulzheimer S, Kalender W A. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart.  Med Phys. 2000;  27 1881-1902
  • 29 Vogl T J, Abolmaali N D, Diebold T. et al . Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography.  Radiology. 2002;  223 212-220
  • 30 Ohnesorge B, Flohr T, Becker C. et al . Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience.  Radiology. 2000;  217 564-571

PD Dr. med. Thomas Boehm

Dpt. Medical Radiology, Institute of Diagnostic Radiology, University Hospital Zurich

Rämistrasse 100

8091 Zurich

Email: Thomas_Boehm@gmx.net