Am J Perinatol 2003; 20(8): 447-452
DOI: 10.1055/s-2003-45390
ORIGINAL ARTICLE

Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

End-Tidal CO2 as a Function of Tidal Volume in Mechanically Ventilated Infants

Karen J. Greer, Winslade A. Bowen, Alfred N. Krauss
  • Perinatology Center, Department of Pediatrics, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York
Further Information

Publication History

Publication Date:
02 January 2004 (online)

ABSTRACT

Objective: To test the hypothesis that end-tidal CO2 (PETCO2) varies with tidal volume (Vt) in preterm infants. Design: Intervention study, nonrandomized trial. Setting: Neonatal ICU, regional referral center. Subjects: 29 preterm infants 790 to 2135 g in weight requiring mechanical ventilation studied on 73 occasions. Intervention: Measurement of PETCO2 during variations of Vt. Measurement: Statistical correlation of PETCO2 to Vt. Result: PETCO2 is minimal when Vt is either too low or too high. Conclusion: Vt, through its effect on dead space/Vt (Vd/Vt) ratios and arterial-alveolar CO2 differences, has a significant effect on PETCO2. Observation of PETCO2 across a range of Vt can be used to select an appropriate Vt for preterm infants requiring mechanical ventilation.

REFERENCES

  • 1 West J B. Regional differences in blood flow and ventilation in the lung. In: Caro CG, ed. Advances in Respiratory Physiology Baltimore: Williams & Wilkins 1966: 198-254
  • 2 Farhi L E. Ventilation-perfusion relationship and its role in alveolar gas exchange. In: Caro CG, ed. Advances in Respiratory Physiology Baltimore: Williams & Wilkins 1966: 138-197
  • 3 Thibeault D W, Poblete E, Auld P AM. Alveolar-arterial O2 and CO2 differences and their relation to lung volume in the newborn.  Pediatrics . 1968;  41 574-587
  • 4 Krauss A N, Auld P AM. Ventilation-perfusion abnormalities in the premature infant: triple gradient.  Pediatr Res . 1969;  3 255-264
  • 5 Tori C A, Krauss A N, Auld P AM. Serial studies of lung volume and VA/Q in hyaline membrane disease.  Pediatr Res . 1973;  7 82-88
  • 6 Epstein M F, Cohen A R, Feldman H A, Raemer D B. Estimation of PaCO2 by two non-invasive methods in the critically ill newborn infant.  J Pediatr . 1985;  106 282-286
  • 7 Badgwell J M, McLeod M E, Lerman J, Creighton R E. End-tidal PCO2 measurements sampled at the distal and proximal ends of the endotracheal tube in infants and children.  Anesth Analg . 1987;  66 959-964
  • 8 McEvedy B AB, McLeod M E, Mulera M, Kirpalani H, Lerman J. End-tidal, transcutaneous, and arterial PCO2 measurements in critically ill neonates: a comparative study.  Anesthesiology . 1988;  69 112-116
  • 9 Hand I L, Shepard E K, Krauss A N, Auld P AM. Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome.  Crit Care Med . 1989;  17 556-559
  • 10 Tsuno K, Prato P, Kolobow T. Acute lung injury from mechanical ventilation at moderately high airway pressures.  J Appl Physiol . 1990;  69 956-961
  • 11 West J. Ventilation/Blood Flow and Gas Exchange.  5th ed. Oxford: Blackwell Scientific Publications 1990: 80-82
  • 12 Croxton F E. Elementary Statistics with Applications in Medicine and the Biological Sciences.  New York: Dover Publications; 1953
  • 13 Minitab. Release 8. State College, PA 1991
  • 14 Axum Technical Graphics and Data Analysis. Release 4.0 Seattle, WA; 1994
  • 15 Russell G B, Graybeal J M. Reliability of the arterial to end-tidal carbon dioxide gradient in mechanically ventilated patients with multisystem trauma.  J Trauma . 1994;  36 317-322