Planta Med 2003; 69(12): 1113-1118
DOI: 10.1055/s-2003-45192
Original Paper
Biochemistry
© Georg Thieme Verlag Stuttgart · New York

A Deglucosylated Metabolite of Paeoniflorin of the Root of Paeonia lactiflora and its Pharmacokinetics in Rats

Su-Lan Hsiu1 , Ya-Tze Lin2 , 3 , Kuo-Ching Wen4 , Yu-Chi Hou5 , Pei-Dawn Lee Chao1
  • 1Department of Pharmacy, China Medical University, Taichung, R.O.C.
  • 2Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, R.O.C.
  • 3National Laboratories of Foods and Drugs, Department of Health, Executive Yuan, R.O.C.
  • 4Department of Cosmeceutics, China Medical University, Taichung, Taiwan, R.O.C.
  • 5School of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.
Further Information

Publication History

Received: May 19, 2003

Accepted: October 3, 2003

Publication Date:
29 January 2004 (online)

Abstract

Paeoniflorin is a bioactive monoterpene glucoside in Paeoniae Radix (PR), the roots of Paeonia lactiflora (Ranunculaceae). By oral administration to rats with the decoction of PR, the metabolism and pharmacokinetics of paeoniflorin were investigated in this study. A deglucosylated metabolite of paeoniflorin, paeoniflorgenin (PG), in serum was identified based on HPLC/MS and NMR spectral data. HPLC/UV methods were developed for determining PG in serum and feces suspension. A non-compartment model was used for the calculation of pharmacokinetic parameters. Moreover, the metabolism of paeoniflorin by various types of feces was investigated as well. The paeoniflorin levels in serum were below the detection limit throughout the study. The Cmax, tmax, and AUC0-t of PG were 8.0 μg/mL, 10 min and 487.0 μg min/mL, respectively. Paeoniflorin was found to be hydrolyzed into PG through incubation with feces of rabbit, rat, pig or human. Similar profiles of PG were shown for various types of feces, except for rabbit. In conclusion, paeoniflorin was not absorbed per se, whereas its aglycone paeoniflorgenin was absorbable and circulating in the bloodstream. Rat and pig are appropriate models for investigating the metabolism and pharmacokinetics of paeoniflorin.

References

  • 1 Sugishita E, Amagaya S, Ogihara Y. Studies on the combination of Glycyrrhizae Radix in Shakuyakukanzo-To.  J Pharmacobiodyn. 1984;  7 427-35
  • 2 Yamahara J, Yamada T, Kimura H, Sawada T, Fujimura H. Biologically active principles of crude drugs. II. Anti-allergic principles in ”Shoseiryu-To” anti-inflammatory properties of paeoniflorin and its derivatives.  J Pharmacobiodyn. 1982;  5 921-9
  • 3 Kimura M, Kimura I, Nojima H. Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin.  Jpn J Pharmacol. 1985;  37 395-9
  • 4 Watanabe H. Candidates for cognitive enhancer extracted from medicinal plants: paeoniflorin and tetramethylpyrazine.  Behav Brain Res. 1997;  83 135-41
  • 5 Tamaya T, Sato S, Okada H H. Possible mechanism of steroid action of the plant herb extracts glycyrrhizin, glycyrrhetinic acid, and paeoniflorin: inhibition by plant herb extracts of steroid protein binding in the rabbits.  Am J Obstet Gynecol. 1986;  155 1134-9
  • 6 Hsu F L, Lai C W, Cheng J T. Antihyperglycemic effects of paeoniflorin and 8-debenzoylpaeoniflorin, glucosides from the root of Paeonia lactiflora .  Planta Med. 1997;  63 323-5
  • 7 Cheng J T, Wang J C, Hsu F L. Paeoniflorin reverses guanethidine-induced hypotension via activation of central adenosine A1 receptors in Wistar rats.  Clin Exp Pharmacol Physiol. 1999;  26 815-6
  • 8 Lai C W, Hsu F L, Cheng J T. Stimulatory effect of paeoniflorin on adenosine A-1 receptors to increase the translocation of protein kinase C (PKC) and glucose transporter (GLUT 4) in isolate rat white adipocytes.  Life Sci. 1999;  62 1591-5
  • 9 Ye J, Duan H, Yang X, Yan W, Zheng X. Anti-thrombosis effect of paeoniflorin: Evaluated in a photochemical reaction thrombosis model in vivo .  Planta Med. 2001;  67 766-7
  • 10 Takeda S, Isono T, Wakui Y, Matsuzaki Y, Sasaki H, Amagaya S, Maruno M. Absorption and excretion of paeoniflorin in rats.  J Pharm Pharmacol. 1995;  47 1036-40
  • 11 Takeda S, Isono T, Wakui Y, Mizuhara Y, Amagaya S, Maruno M, Hattori M. In-vivo assessment of extrahepatic metabolism of paeoniflorin in rats: relevance to intestinal flora metabolism.  J Pharm Pharmacol. 1997;  49 35-9
  • 12 Hattori M, Shu Y Z, Shimizu M, Hayashi T, Morita N, Kobashi K, Xu G, Namba T. Metabolism of paeoniflorin and related compounds by human intestinal bacteria.  Chem Pharm Bull. 1985;  33 3838-46
  • 13 Shu Y Z, Hattori M, Akao T, Kobashi K, Kagi K, Fukuyama K, Tsukihara T, Namba T. Metabolism of paeoniflorin and related compounds by human intestinal bacteria. II. Structures of 7S- and 7R-paeonimetabolines I and II formed by Bacteroides fragilis and Lactobacillus brevis .  Chem Pharm Bull. 1987;  35 3726-33
  • 14 Heikal O A, Miyashiro H, Akao T, Hattori M. Quantitative determination of paeoniflorin and its major metabolites, paeonimetabolin I, in the rat plasma by enzyme immunoassay.  J Trad Med. 1997;  14 34-40
  • 15 Heikal O A, Akao T, Takeda S, Hattori M. Pharmacokinetic study of paeonimetabolin I, a major metabolite of paeoniflorin from Paeony roots.  Biol Pharm Bull. 1997;  20 517-21
  • 16 Shu Y Z, Hattori M, Namba T, Mibu K, Akao T, Kobashi K J. Metabolic activation of components of oriental medicines by human intestinal flora. on paeoniflorin and albiflorin, constituents of paeony roots.  Pharmacobio-Dyn. 1987;  10 s-58
  • 17 Yamasaki K, Kaneda M, Tanaka O. Carbon-13 NMR spectral assignments of paeoniflorin homologues with the aid of spin-lattice relaxation time.  Tetrahedron Lett.. 1976;  44 3965-8
  • 18 Ching H ., Hsiu S L, Hou Y C, Chen C C, Chao P DL. Comparison of pharmacokinetics between glycyrrhizin and glycyrrhetic acid in rabbits.  J Food Drug Anal. 2001;  9 67-71
  • 19 Chao P DL, Hsiu S L, Hou Y C. Flavonoids in Herbs: biological fates and potential interactions with xenobiotics.  J Food Drug Anal.. 2002;  11 35-45
  • 20 Hattori M, Yang X, Shu Y, Heikal O A, Miyashiro H, Kanaoka M, Akao T, Kobashi K, Namba T. Enzyme immunoassay for paeonimetabolin I, a major metabolite of paeoniflorin by intestinal bacteria.  J Trad Med. 1996;  13 73-80
  • 21 Lin Y T, Hsiu S L, Hou Y C, Chen H Y, Chao P DL. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora.  Biol Pharm Bull. 2003;  26 747-51

Prof. Pei-Dawn Lee Chao

Department of Pharmacy

China Medical University

Taichung

Taiwan

R.O.C.

Fax: +886-4-22031028

Email: pdlee@mail.cmu.edu.tw

    >