Subscribe to RSS
DOI: 10.1055/s-2003-45008
3-Substituted and 2,3-Disubstituted Cyclopentanones via an Asymmetric Tandem 1,4-Addition/Dieckmann Cyclization [1]
Publication History
Publication Date:
19 December 2003 (online)
Abstract
A new stereoselective method for the synthesis of 3-substituted and 2,3-disubstituted cyclopentanones is described. The key step is the 1,4-addition of a cuprate to a chilar Michael-acceptor derived from (-)-8-phenylmenthol or the Helmchen auxiliary followed by Dieckmann cyclization of the obtained chiral enolates. The resultant 2,3-cyclopentanones can be transformed after methanolysis and demethoxycarbonylation to the related 3-substituted cyclopentanones.
Key words
asymmetric synthesis - cyclopentanones - cuprate - chiral auxiliary - 1,4-addition - Dieckmann cyclization - natural products
- 1 Stereoselective Synthesis of Steroids and Related Compounds, part VII. For part VI see:
Groth U.Richter N.Kalogerakis A. Eur. J. Org. Chem. 2003, 23: 4634 - 2a Comprehensive Natural Products Chemistry Vol. 8: Elsevier Science Ltd.; Amsterdam: 1999. p.108-136
-
2b
Ernst M.Helmchen G. Angew. Chem. Int. Ed. 2002, 41: 4054 ; Angew. Chem. 2002, 114, 4231 -
2c
Helmchen G.Gocke A.Lauer G.Urmann M. Angew. Chem., Int. Ed. Engl. 1990, 29: 1024 ; Angew. Chem. 1990, 102, 1079(3) -
3a
Oppolzer W.Cunningham F. Tetrahedron Lett. 1986, 26: 5467 -
3b
Mash EA. J. Org. Chem. 1987, 52: 4142 -
3c
Lawler DM.Simpkins NS. Tetrahedron Lett. 1988, 29: 1207 -
3d
Suzuki T.Tada H.Unno K. J. Chem. Soc., Perkin Trans. 1 1992, 2017 -
3e
Groth U.Halfbrodt W.Köhler T.Kreye P. Liebigs Ann. Chem. 1994, 885 -
3f
Urban E.Knühl G.Helmchen G. Tetrahedron 1995, 51: 13031 - 4
Helmchen G.Ihrig K.Schindler H. Tetrahedron Lett. 1987, 28: 183 -
5a
Fürstner A.Müller T. Synlett 1997, 1010 -
5b
Fürstner A.Langenmann K. J. Org. Chem. 1996, 61: 8746 - 5c The Total Synthesis of Natural Products Vol. 11: John Wiley & Sons, Inc.; New York: 1994. p.172-173
-
5d
Dactylol is a bicyclic sesquiterpene, which can be synthesized starting from a 2,3-disubstituted cyclopentanone.
-
6a
Quinkert G.Müller T.Königer A.Schultheis O.Sickenberger B.Dürner G. Tetrahedron Lett. 1992, 33: 3469 - 6b The Total Synthesis of Natural Products Vol. 11: John Wiley & Sons, Inc.; New York: 1994. p.148-150
-
6c
Confertin can also be synthesized from a 2,3-disubstituted cyclopentanone.
-
7a
Noyori R.Suzuki M. Angew. Chem. Int. Ed. Engl. 1984, 23: 847 ; Angew. Chem. 1984, 96, 854 -
7b
Steglich W.Fugmann B.Lang-Fugmann S. RÖMPP Natural Products Thieme; Stuttgart: 2000. p.517-518 -
8a
Wiechert R. Angew. Chem. Int. Ed. Engl. 1970, 9: 321 ; Angew. Chem. 1970, 82, 331 -
8b
Wiechert R. Angew. Chem. Int. Ed. Engl. 1970, 16: 506 ; Angew. Chem. 1977, 89, 513 -
8c
Quinkert G.Stark H. Angew. Chem. Int. Ed. Engl. 1983, 22: 637 ; Angew. Chem. 1983, 95, 651 -
8d
Steglich W.Fugmann B.Lang-Fugmann S. RÖMPP Natural Products Thieme; Stuttgart: 2000. p.608-611 -
9a
Yamamoto Y. In Houben-Weyl, Methods of Organic Chemistry Vol. E 21b: Thieme; Stuttgart: 1995. p.2041-2155 -
9b
Urban E.Knühl G.Helmchen G. Tetrahedron 1996, 52: 971 -
9c
Kanai M.Tomioka K. Tetrahedron Lett. 1994, 35: 895 -
9d
Hailes HC.Isaac B.Javaid MH. Tetrahedron Lett. 2001, 42: 7325 -
9e
Denmark SE.Kim J.-O. J. Org. Chem. 1995, 60: 7535 -
9f
Hanessian S.Gomtsyan A.Malek N. J. Org. Chem. 2000, 65: 5623 -
9g
Hua DH.Chan-Yu-King R.McKie JA.Myer L.
J. Am. Chem. Soc. 1987, 109: 5026 -
9h
Barnhart RW.Wang X.Noheda P.Bergens SH.Whelan J.Bosnich B. J. Am. Chem. Soc. 1994, 116: 1821 -
9i
Barnhart RW.McMorran DA.Bosnich B. Chem. Commun. 1997, 589 -
9j
Moritani Y.Appella DH.Jurkauskas V.Buchwald SL. J. Am. Chem. Soc. 2000, 122: 6797 -
9k
Liang L.
Au-YeungChan ASC. Org. Lett. 2002, 4: 3799 -
10a
Nugent WA.Hobbs FW. J. Org. Chem. 1983, 48: 5364 -
10b
Nugent WA.Hobbs FW. Org. Synth. 1988, 66: 52 -
10c
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 ; Angew. Chem. 1993, 105, 137 -
10d
Rossiter BE.Swingle NM. Chem. Rev. 1992, 92: 771 -
11a
Groth U.Köhler T.Taapken T. Tetrahedron 1991, 47: 7583 -
11b
Groth U.Huhn T.Richter N. Liebigs Ann. Chem. 1993, 49 -
11c
Groth U.Köhler T.Taapken T. Liebigs Ann. Chem. 1994, 665 -
11d
Groth U.Taapken T. Liebigs Ann. Chem. 1994, 669 - 12
Sumitomo H.Kobayashi K.Saiji T. J. Polym. Sci. 1972, 10: 3421 -
13a
Ort O. Org. Synth. 1987, 65: 203 -
13b
Scharf H.-D.Buschmann H. Synthesis 1988, 827 ; and references cited therein - 14
Oppolzer W.Moretti R.Godel T.Meunier A.Löher H. Tetrahedron Lett. 1983, 24: 4971 -
15a
Lipshutz BH. Synlett 1990, 119 -
15b
Lipshutz BH. Org. React. 1992, 41: 135 - 18
Marx JN.Norman LR. J. Org. Chem. 1975, 40: 1602 -
19a
For 9b (R = Ph): [α]D 20 = +83.4 (c 0.3, CHCl3).
-
19b
Taber DF.Raman K. J. Am. Chem. Soc. 1983, 105: 5935 -
19c
Taura Y.Tanaka M.Wu X.-M.Funakoshi K.Sakai K. Tetrahedron 1991, 47: 4879 - 21
Hiemstra H.Wynberg H. Tetrahedron Lett. 1977, 25: 2183 -
22a
Parish EJ.Mody NV.Hedin PA.Miles DH. J. Org. Chem. 1974, 39: 1592 -
22b
Huang B.-S.Parish EJ.Miles DH. J. Org. Chem. 1974, 39: 2647
References
Vinyllithium was prepared via reaction of tetravinyltin with n-BuLi.
17
Experimental Procedure: A solution of 10.0 mmol organolithium compound in Et2O (10 mL) was added to a solution of 5.0 mmol copper(I) cyanide in Et2O (10 mL)at
-80 °C. After 2 h stirring 5.0 mmol BF3·Et2O were added and the resultant mixture was cooled at -95 °C. A solution of 1.0 mmol chiral enoate 5 in Et2O (10 mL) was added via canulla and the obtained mixture was allowed to warm under stirring to r.t. (18 h). The reaction mixture was quenched with aq sat. NH4Cl solution (30 mL), extracted with Et2O (2 × 20 mL), the combined organic layer dried over MgSO4 and evaporated in vacuum. Purification of the residue by flash chromatography provided the 2,3-substituted cyclopentanone 7.
Analytical data of selected compounds (Figure
[1]
).
Compound 7e: Rf 0.41 (Et2O-petroleum ether, 1:5). IR(film): 3040 (alkene CH), 1740 (C=O), 1725 (OC=O), 1650 (alkene C=C), 1610 (arom. C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.87 (d, 3
J = 6.5 Hz, 1 H, H-5′), 1.19 (s, 3 H, CH3), 1.27 (s, 3 H, CH3), 0.80-1.84 (m, 7 H, H-1′, H-3′, H-4′, H-6′), 1.88-2.40 (m, 3 H, H-4, H-5, H-2′), 3.46 (d,
3
J = 11 Hz, 1 H, H-2), 2.83-3.05 (m, 1 H, H-3), 4.81 (ddd,
3
J = 10.5, 10.5, 4 Hz, 1 H, COOCH, H-1′), 5.09 (ddd, J
cis
= 10 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.125 (ddd, J
trans
= 17 Hz, J = 1.5, 1.5 Hz, 1 H, CH=CH2), 5.745 (ddd, J
trans
= 17 Hz, J
cis
= 10 Hz, J = 7 Hz, 1 H, CH=CH2), 7.06-7.20 (m, 1 H, arom. H), 7.23-7.38 (m, 4 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 21.74 [22.75] (CH3), 25.68 (CH3), 26.58 (cyclopentane-CH2), [26.43] 26.65 (cyclohexane-CH2), 27.37 [27.51] (CH3), [29.52] 31.28 (CHCH3, C-5′), 34.52 [34.68] (cyclohexane-CH2), 37.79 [38.25] (cyclopentane-CH2), 39.70 [39.87] (C(CH3)2), 41.38 [41.73] (cyclohexane-CH2), 43.73 [46.20] (CHCH=CH2, C-3), 49.96 [50.48] (C-2¢), 60.90 [62.07] (COCHCO, C-2), 75.96 [76.30] (C-1′), 115.78 [116.24] (CH = CH2), 124.87 [125.18], 125.45 [125.56], [127.84] 127.97 (3 × C-arom.), 138.62 [140.67] (CH=CH2), 151.51 (C-arom.), 167.34 [168.13] (COO), 210.22 (CO) (signals of the 2R,3S-configured diastereomer in brackets). EI-MS (70 eV): m/z (100) = 119 [PhC(CH3)2] (100), 249 (4) [M+ - PhC(CH3)2)], 368 (2) [M+]. Anal. Calcd for C24H32O3 (368.5): C, 78.22; H, 8.75. Found: C, 78.39; H, 8.85.
Compound 7f (Table 1, entry 11): Rf 0.46 (Et2O-petroleum ether, 1:1); mp: 59-63 °C. IR(nujol): 3060, 3040 (arom. CH), 1750 (C=O), 1730 (OC=O), 1640 (C=C), 1610, 1595 (arom. C=C), 1350, 1165 (CSO2N) cm-1. 1H NMR (250 MHz, CDCl3): δ = 0.82 (s, 3 H, CH3), 0.88 (s, 3 H, C-1-CH3), 1.04 (s, 3 H, CH3), 0.90-2.45 (m, 9 H, CH, CH2), 2.02 (s, 3 H, arom. CH3), 2.32 (s, 3 H, arom. CH3), 3.33 (d, J
trans
= 11.2 Hz, 1 H, H-2′), 3.34-3.50 (m, 1 H, H-3′), 4.25 (ddd, J = 8.8 Hz, J = 3.4 Hz, 4
J = 1.0 Hz, 1 H, H-3), 5.11 (ddd, J
cis = 10.6 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.27 (ddd, J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.46 (d, J = 8.8 Hz, 1 H, H-2), 5.78 (s, 1 H, arom. H), 5.98 (ddd, J
trans
= 17.0 Hz, J
cis
= 10.6 Hz, J = 6.6 Hz, 1 H, CH=CH2), 6.83 (s, 1 H, arom. H), 7.11 (s, 1 H, arom. H), 7.28-7.57 (m, 5 H, arom. H). 13C NMR (62.5 MHz, CDCl3): δ = 14.30 (C-10), 19.41 (C-8), 19.51 (C-9), 19.69 (C-5), 20.98, 21.29 (2 × arom. CCH3), 26.59 (C-6), 26.62 (C-4′), 38.13 (C-5′), [35.53] 43.46 (C-3′), 45.71 (C-7), 49.38 (C-4), 51.30 (C-1), 59.35 (C-3), 60.77 [63.27] (C-2′), 77.59 (C-2), 115.38 (CH=CH2), 127.49, 128.12, 129.33, 129.89, 132.46 (arom. C), 138.64 (CH=CH2), 136.98, 137.05, 138.16, 139.04 (arom. C), 167.88 (CHCOO), 210.70 [212.35] (C=O) (signals of the 2′R,3′S-configured diastereomer in brackets). EI-MS (70 eV): m/z (%) = 549 (3) [M+], 395(11) [M+ - C8H10O3], 254 (100) [M+ - C8H10O3 - SO2C6H5], 105 (22) [C8H9
+]. Anal. Calcd for C32H39O5NS (549.7): C, 69.92; H, 7.15. Found: C, 69.87; H, 7.28.
Compound 8e (Table 2, entry 5): Rf 0.31 (Et2O-petroleum ether, 1:2). [α]D
20 +82.3 (c 1.5, CHCl3). Bp. 65-70 °C (2 torr). IR(film): 3065 (alkene CH), 1750 (C=O), 1730 (OC=O), 1635 (C=C) cm-1. 1H NMR (250 MHz, CDCl3):
δ = 1.54-1.86 (m, 1 H, CH), 2.16-2.60 (m, 3 H, CH, CH2), 3.03 (dd, 3
J = 11.6 Hz, 4
J = 0.6 Hz, 1 H, C-2-H), 3.14-3.29 (m, 1 H, C-3-H), 3.76 (s, 3 H, OCH3), 5.10 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.17 (ddd,
3
J
trans
= 17.0 Hz, 2
J = 1.2 Hz, 4
J = 1.2 Hz, 1 H, CH=CH2), 5.84 (ddd, 3
J
trans
= 17.0 Hz, 3
J
cis
= 10.0 Hz, 3
J = 6.6 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 27.25 (C-4), 38.12 (C-5), 44.83 (C-3), 52.48 (OCH3), 60.77 (C-2), 115.95 (CH=CH2), 135.95 (CH=CH2), 169.10 (COOCH3), 210.71 (C-1). EI-MS (70 eV): m/z (%) = 168 (86) [M+], 137 (85) [M+ - OCH3], 109 (90) [M+ - COOCH3], 81 (100) [M+ - C2H3O2 - C2H3 - H]. HRMS: m/z calcd for C9H12O3 (168.2): 168.0786; found: 168.0786.
Compound 10e (Table 2, entry 5): Rf 0.41 (Et2O-petroleum ether, 1:10). [α]D
20 +3.3 (c 1.4, CHCl3). IR(film): 3065 (alkene CH), 1635 (C=C) cm-1. 1H NMR (250 MHz, CDCl3): δ = 1.21-1.27 (m, 6 H, CH3), 1.31-2.08 (m, 6 H, CH2), 2.46-2.74 (m, 1 H, CHCH=CH2), 3.47-3.66 (m, 2 H, OCH), 4.91 (ddd, 3
J
cis = 10.0 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.00 (ddd, 3
J
trans
= 17.2 Hz, 2
J = 1.5 Hz, 4
J = 1.5 Hz, 1 H, CH=CH2), 5.79 (ddd, 3
J
trans
= 17.2 Hz, 3
J
cis
= 10.0 Hz, 3
J = 7.2 Hz, 1 H, CH=CH2). 13C NMR (62.5 MHz, CDCl3): δ = 16.86 (CH3), 16.95 (CH3), 30.57, 37.98 (CH2), 42.16 (C-7), 44.43 (CH2), 78.21 (CHCH3), 78.26 (CHCH3), 113.07 (CH=CH2), 116.84 (OCO), 141.98 (CH=CH2). EI-MS (70 eV): m/z (%) = 182 (3) [M+], 114 (100) [C6H10O2
+], 54 (26) [C4H8
+]. Anal. Calcd for C11H18O2 (182.3): C, 72.49; H, 9.95. Found: C, 72.36; H, 9.84.
For 9c (R = t-Bu): [α]D 20 = +134.8 (c 1.13, CHCl3); ref.19b