Subscribe to RSS
DOI: 10.1055/s-2003-44990
Diastereoselective Synthesis of Chiral [4.4]- and [4.5]-Spiroketals from Furan Derivatives: Study on the Asymmetric Synthesis of Tonghaosu Analogs
Publication History
Publication Date:
16 December 2003 (online)
Abstract
Diastereoselective syntheses of [4.4]- and [4.5]-spiroketal featured tonghaosu analogs were explored. An excellent diastereoselectivity was achieved for [4.5]-spiroketals due to anomeric, steric, and perhaps π-π interactions; [4.4]-spiroketal could be obtained in good diastereoselectivity by tuning substituted pattern of the tetrahydrofuran ring.
Key words
spiroketal - diastereoselectivity - Tonghaosu analogs
- 1
Perron F.Albizati KF. Chem. Rev. 1989, 89: 1617 - 2
Fletcher MT.Kitching W. Chem. Rev. 1995, 95: 789 - 3
Francke W.Kitching W. Curr. Org. Chem. 2001, 5: 233 - 4
Boivin TLB. Tetrahedron 1987, 43: 3309 - 5
Mead KT.Brewer NB. Curr. Org. Chem. 2003, 7: 227 - 6
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry Pergamon; Oxford: 1983. - For example:
-
7a
Hungerbuler E.Naef R.Wasmuth D.Seebach D. Helv. Chim. Acta 1980, 63: 1960 -
7b
Rosini G.Ballini R.Petrini M.Marotta E. Angew. Chem., Int. Ed. Engl. 1986, 25: 941 -
7c
Occhiato EG.Scarpi D.Menchi G.Guarna A. Tetrahedron: Asymmetry 1996, 7: 1929 -
7d
Occhiato EG.Guarna A.De Sarlo F.Scarpi D. Tetrahedron: Asymmetry 1995, 6: 2971 -
7e
Hirai K.Ooi H.Esumi T.Iwabuchi Y.Hatakeyama S. Org. Lett. 2003, 6: 857 - 8
Slladie G.Huser N.Fisher J.Decian A. J. Org. Chem. 1995, 60: 4988 - 9
Miyakoshi N.Mukai C. Org. Lett. 2003, 6: 2335 - 10
Suenaga K.Araki K.Sengoku T.Uemura D. Org. Lett. 2001, 4: 527 - 11 Partial result has been published in:
Wu Z.-H.Wang J.Li J.-C.X Y.-Z.Yu A.-L.Feng Z.-R.Shen J.Wu Y.-L.Guo P.-F.Wang Y.-N. Natl. Prod. Res. Dev. (China) 1994, 6: 1 -
12a
Hegnauer R. In Chemotaxonomie der Pflanzen Vol.3: Birkhauser Verlag; Basel: 1964. p.447 -
12b
Bohlmann F.Burkhardt T.Zdero C. Naturally Occurring Acetylenes Academic Press; London: 1973. -
12c
Greger H. In The Biology and Chemistry of CompositaeHeywood VH.Harborne JB.Turner BL. Academic Press; London: 1977. Chap. 32. -
12d
Bohlmann F. In Chemistry and Biology of Naturally Occurring Acetylenes and Related CompoundsLam J.Bretler H.Anason T.Hansen L. Elsvier; Amsterdam: 1988. p.1 -
12e
Zdero C.Bohlmann F. Plant Syst. Evol. 1990, 171: 1 - 13
Christensen LP. Phytochemistry 1992, 31: 7 -
14a
Bohlmann F.Jastrow H.Ertringshausen G.Kramer D. Chem. Ber. 1964, 97: 801 -
14b
Bohlmann F.Florentz G. Chem. Ber. 1966, 99: 990 -
14c
Bohlmann F.Diedrich B.Gordon W.Fanghänel L.Schneider J. Tetrahedron Lett. 1965, 1385 -
15a
Gao Y.Wu W.-L.Ye B.Zhou R.Wu Y.-L. Tetrahedron Lett. 1996, 37: 893 -
15b
Gao Y.Wu W.-L.Wu Y.-L.Ye B.Zhou R. Tetrahedron 1998, 54: 12523 - 16
Fan J.-F.Zhang Y.-F.Wu Y.Wu Y.-L. Chin. J. Chem. 2001, 19: 1254 - 17
Fan J.-F.Yin B.-L.Zhang Y.-F.Wu Y.-L.Wu Y. Huaxue Xuebao 2001, 59: 1756 - 18
Yin B.-L.Yang Z.-M.Hu T.-S.Wu Y.-L. Synthesis 2003, 1995 - 20 For a recent review on aromatic interactions in organic synthesis, see:
Jones GB. Tetrahedron 2001, 57: 7999 ; and references cited therein - For examples of aromatic interactions in molecular recognition, see:
-
21a
Inouye M.Itoh MS.Nakazumi H. J. Org. Chem. 1999, 64: 9393 -
21b
Ponzini F.Zagha R.Hardcastle K.Siegel JS. Angew. Chem. Int. Ed. 2000, 39: 2323 - For examples in biology, see:
-
22a
Quan RW.Li Z.Jacobsen EN. J. Am. Chem. Soc. 1996, 118: 8156 -
22b
Wedemayer GJ.Patten PA.Wang LH.Schultz PG.Stevens RC. Science 1997, 276: 1665
References
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 11a: A mixture of 9a (1.16 g, 5 mmol), (1R, 2R)-(-)-pseudoephedrine (0.83 g, 5 mmol), MeOH (20 mL) and Et3N (10 mL) was refluxed under nitrogen for 24 h. Removal of the solvents under reduced pressure gave a yellow oily crude product amide. Without further purification the oil was solved in anhyd CH2Cl2 (20 mL) and to the obtained solution was added CSA (20 mg). The reaction mixture was stirred at r.t. until the disappearance of all the starting material (ca. 24 h) and then quenched with sat. aq NaHCO3. The aqueous layer was extracted with CH2Cl2 and the combined organic layers were washed with brine and dried over Na2SO4. Removal of solvent gave the crude spiroketal, which was purified by flash chromatography to yield compound 11a (1.58 g, 91%): mp 162-163 °C, [α]D 20 +345.2 (c 1.0, CHCl3). IR (KBr): 3101, 1674, 1658, 1490, 1450, 1243, 1009, 925, 746, 693 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.47-7.13 (10 H, m), 6.50 (1 H, d, J = 5.5 Hz), 6.19 (1 H, d, J = 5.5 Hz), 5.50 (1 H, s), 4.81 (1 H, d, J = 5.8 Hz), 4.17 (1 H, m), 3.15 (3 H, s), 1.37 (3 H, d, J = 6.7 Hz). MS: m/z (%) = 347 (17.0) [M+], 256 (2.1), 173 (12.5), 172 (79.0), 128 (10.0), 118 (100.0), 117 (34.6), 116 (10.7), 115 (12.8). HRMS: m/z calcd for C22H21O3N: 347.1516. Found: 347.1509.
23
Typical Procedure of Acid Catalyzed Sipoketalization for Synthesis of Compound 20 and 21: To a solution of 19 (1.2 g, 3.48 mmol) in 15 mL of CH2Cl2 was added catalytic amount of CSA (40 mg). The reaction mixture was stirred at r.t. for 24 h, and the separated aqueous phase was extracted with CH2Cl2, and the combined organic layers were washed with brine and dried over Na2SO4 After removal of the solvent, the residue was chromatographed to afford 20 (828 mg, 72.7%) and 21 (230 mg, 20.2%). Compound 20: mp 142-143 °C. IR (film): 3180, 2974, 1656, 1492, 1352, 1237, 1097, 1014, 747, 690 cm-1. 1H NMR (300 MHz, CDCl3):
δ = 7.60 (2 H, d, J = 7.4 Hz), 7.27 (2 H, m), 7.15 (1 H, m), 6.51 (1 H, d, J = 5.7 Hz), 6.07 (1 H, dd, J = 0.9 Hz, 5.7 Hz), 5.52 (1 H, s), 4.19 (1 H, ddd, J = 3.3 Hz, 6.9 Hz, 11.1 Hz), 3.63-3.37 (3 H, m), 3.28 (1 H, dd, J = 3.3 Hz, 12.3 Hz), 1.85 (1 H, m), 1.22 (3 H, t, J = 7.5 Hz), 0.99 (6 H, t, J = 5.7 Hz). MS: m/z (%) = 313 (31.8) [M+], 173 (27.5), 172 (100.0), 144 (19.8), 128 (16.0) Anal. Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.99; H, 7.62; N, 4.31.
Compound 21: syrup. IR (film): 3086, 2964, 2935, 1669, 1597, 1491, 1352, 1238, 825, 690 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.58 (2 H, d, J = 7.5 Hz), 7.26 (2 H, m), 7.16 (1 H, m), 6.47 (1 H, d, J = 5.7 Hz), 6.22 (1 H, d, J = 5.7 Hz), 5.50 (1 H, s), 3.85 (2 H, m), 3.52 (2 H, dq, J = 1.8 Hz, 7.2 Hz), 3.34 (1 H, dd, J = 1.8 Hz, 10.8 Hz), 1.94 (1 H, m), 1.21 (3 H, t, J = 7.2 Hz), 1.02 (3 H, d, J = 7.2 Hz), 0.96 (3 H, d, J = 7.2 Hz). MS: m/z (%) = 313 (38.3) [M+], 173 (26.0), 172 (100.0), 144 (22.1), 128 (12.9), 116 (17.0), 115 (22.1). Anal. Calcd for C19H23NO3: C, 72.82; H, 7.40; N, 4.47. Found: C, 72.69; H, 7.46; N, 4.41.