Plant Biol (Stuttg) 2003; 5(5): 550-556
DOI: 10.1055/s-2003-44790
Original Paper

Georg Thieme Verlag Stuttgart · New York

A Study of the Interaction between Auxin and Ethylene in Wild Type and Transgenic Ethylene-Insensitive Tobacco during Adventitious Root Formation Induced by Stagnant Root Zone Conditions

M. P. McDonald 1 , E. J. W. Visser 1
  • 1Department of Ecology, University of Nijmegen, Nijmegen, The Netherlands
Further Information

Publication History

Publication Date:
27 November 2003 (online)

Abstract

Wild type (Wt) and transgenic plants (etr1-1 gene from Arabidopsis thaliana; encoding for a defective ethylene receptor; Tetr) of Nicotiana tabacum L. were subjected to experiments to resolve the role of the interaction between ethylene and auxin in waterlogging-induced adventitious root formation. Plants were grown in aerated or stagnant deoxygenated nutrient solution and treated with the following plant growth regulators: ethylene, the synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (1-NAA), and the auxin efflux inhibitor naphthylphthalamic acid (NPA). The superior growth of Wt in stagnant solution suggests that the ability to sense and respond to ethylene partially mediates tolerance to stagnant root zone conditions. Wt produced around 2 - 2.5-fold more adventitious roots than Tetr in aerated and stagnant solution. Treatment with NPA phenocopied the effects of ethylene insensitivity by reducing the number of adventitious roots on Wt to Tetr levels. Additionally, application of 1-NAA to the shoot of Tetr increased the number of adventitious roots on Tetr to similar levels as the untreated Wt. However, this level was only around half the number achieved by 1-NAA-treated Wt. The results suggest an interplay between ethylene and auxin in the process of adventitious root formation in waterlogged tobacco, most likely on the level of polar auxin transport. However, a separate non-auxin-related role as a transcription regulator for genes essential to adventitious root formation cannot be excluded.

References

  • 1 Armstrong W.. Aeration in higher plants.  Advances in Botanical Research. (1979);  7 225-332
  • 2 Bleecker A. B.. Ethylene perception and signalling: an evolutionary perspective.  Trends in Plant Science. (1999);  4 243-291
  • 3 Clark D. G., Gubrium E. K., Barrett J. E., Nell T. A., Klee H. J.. Root formation in ethylene-insensitive plants.  Plant Physiology. (1999);  121 53-59
  • 4 Delbarre A., Muller P., Imhoff V., Guern J.. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxyacetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-culture tobacco cells.  Planta. (1996);  198 532-541
  • 5 Drew M. C., Jackson M. B., Giffard S.. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L.  Planta. (1979);  147 83-88
  • 6 Geraats B. P. J., Bakker P. A. H. M., Lawrence C. B., Achuo E. A., Hofte M., van Loon L. C.. Ethylene-insensitive tobacco shows differentially altered susceptibility to different pathogens.  Phytopathology. (2003);  93 813-821
  • 7 Jackson M. B., Armstrong W.. Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence.  Plant Biology. (1999);  1 274-287
  • 8 Jackson M. B., Drew M. C., Giffard S. C.. Effect of applying ethylene to the root system of Zea mays on growth and nutrient concentration in relation to flooding tolerance.  Physiologia Plantarum. (1981);  52 23-28
  • 9 Jackson M. B., Waters I., Setter T., Greenway H.. Injury to rice plants caused by complete submergence; a contribution by ethylene (ethane).  Journal of Experimental Botany. (1987);  38 1826-1838
  • 10 Justin S. H. F. W., Armstrong W.. The anatomical characteristics of roots and plant response to soil flooding.  New Phytologist. (1987);  106 465-495
  • 11 Kramer P. J.. Causes of injury to plants resulting from flooding of the soil.  Plant Physiology. (1951);  26 722-733
  • 12 Knoester M., van Loon L. C., van den Heuvel J., Hennig J., Bol J. F., Linthorst H. J. M.. Ethylene-insensitive tobacco lacks non host resistance against soil-borne fungi.  Proceedings of the National Academy of Science of the United States of America. (1998);  95 1933-1937
  • 13 Konings H., Jackson M. B.. A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation.  Zeitschrift für Pflanzenphysiologie. (1979);  92 385-397
  • 14 Kuiper P. J. C., Walton C. S., Greenway H.. Effect of hypoxia on ion uptake by nodal and seminal wheat roots.  Plant Physiology and Biochemistry. (1994);  32 267-276
  • 15 Laan P., Berrevoets M. J., Lythe S., Armstrong W., Blom C. W. P. M.. Root morphology and aerenchyma formation as indicators of the flood tolerance of Rumex species.  Journal of Ecology. (1989);  77 693-703
  • 16 Liu J. H., Reid D. M.. Auxin and ethylene-stimulated adventitious rooting in relation to tissue sensitivity to auxin and ethylene production in sunflower hypocotyls.  Journal of Experimental Botany. (1992);  43 1191-1198
  • 17 Lund S. T., Smith A. G., Hackett W. P.. Differential gene expression in response to auxin treatment in wild type and rac, an adventitious root incompetent mutant of tobacco.  Plant Physiology. (1997);  114 1197-1206
  • 18 McDonald M. P., Galwey N. W., Ellneskog-Staam P., Colmer T. D.. Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). .  New Phytologist. (2001);  151 369-380
  • 19 Palme K., Gälweiler L.. PIN-pointing the molecular basis of auxin transport.  Current Opinion in Plant Biology. (1999);  2 375-381
  • 20 Pereira J. S., Kozlowski T. T.. Variations among woody angiosperms in response to flooding.  Physiologia Plantarum. (1977);  41 184-192
  • 21 Phillips I. D. J.. Root-shoot hormone relations. II. Changes in endogenous auxin concentration produced by flooding of the root system in Helianthus annuus. .  Annals of Botany. (1964);  28 37-45
  • 22 Pierik R., Visser E. J. W., de Kroon H., Voesenek L. A. C. J.. Ethylene is required in tobacco to successfully compete with proximate neighbours.  Plant, Cell and Environment. (2003);  26 1229-1234
  • 23 Ponnamperuma F. N.. Effects of flooding on soils. Kozlowski, T. T., ed. Flooding and Plant Growth. Orlando; Academic Press (1984): 9-45
  • 24 Raskin I.. A method for measuring leaf volume, density, thickness, and internal gas volume.  HortScience. (1983);  18 698-699
  • 25 Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J.. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutants loci integrated into a stress response pathway.  Genetics. (1995);  139 1393-1409
  • 26 Smith K. A., Robinson P. D.. Effect of ethylene on root extension of cereals.  Nature. (1971);  234 148-149
  • 27 Suttle J. C.. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding on N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls.  Plant Physiology. (1988);  88 795-799
  • 28 Thomson C. J., Armstrong W., Waters I., Greenway H.. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat.  Plant, Cell and Environment. (1990);  13 395-403
  • 29 Thomson C. J., Colmer T. D., Watkin E. L. J., Greenway H.. Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging.  New Phytologist. (1992);  120 335-344
  • 30 Visser E. J. W., Nabben R. H. M., Blom C. W. P. M., Voesenek L. A. C. J.. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations.  Plant, Cell and Environment. (1997);  20 647-653
  • 31 Visser E. J. W., Blom C. W. P. M., Voesenek L. A. C. J.. Flooding-induced adventitious rooting in Rumex: morphology and development in an ecological perspective.  Acta Botanica Neerlandica. (1996 a);  45 17-28
  • 32 Visser E. J. W., Bögemann G. M., Blom C. W. P. M., Voesenek L. A. C. J.. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots.  Journal of Experimental Botany. (1996 b);  47 403-410
  • 33 Visser E. J. W., Cohen J. D., Barendse G. W. M., Blom C. W. P. M., Voesenek L. A. C. J.. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm.  Plant Physiology. (1996 c);  112 1687-1692
  • 34 Voesenek L. A. C. J., Harren F. J. M., Bögemann G. M., Blom C. W. P. M., Reuss J.. Ethylene production and petiole growth in Rumex plants induced by soil waterlogging - The application of a continuous-flow system and a laser driven intra cavity photoacoustic detection system.  Plant Physiology. (1990);  94 1071-1077
  • 35 Wample R. L., Reid D. M.. The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants.  Physiologia Plantarum. (1979);  45 219-226
  • 36 Wiengweera A., Greenway H., Thomson C. J.. The use of agar nutrient solution to simulate lack of convection in waterlogged soils.  Annals of Botany. (1997);  80 115-123

E. J. W. Visser

Department of Ecology
University of Nijmegen

Toernooiveld 1

6525 ED, Nijmegen

The Netherlands

Email: eric.visser@sci.kun.nl

Section Editor: L. A. C. J. Voesenek