Plant Biol (Stuttg) 2004; 6(1): 74-80
DOI: 10.1055/s-2003-44687
Original Paper

Georg Thieme Verlag Stuttgart · New York

Polyamine, Carbohydrate, and Proline Content Changes During Salt Stress Exposure of Aspen (Populus tremula L.): Involvement of Oxidation and Osmoregulation Metabolism

L. Jouve 1 , L. Hoffmann 1 , J.-F. Hausman 1
  • 1CRP-Gabriel Lippmann, CREBS Research Unit, Luxembourg
Further Information

Publication History

Publication Date:
17 February 2004 (online)

Abstract

Excess salt in the soil solution affects the plant either through osmotic or ionic effects. Poplar trees, as fast growing pioneer tree species, are thought to be potential suitable candidates for afforestation on saline soils. Osmotic and oxidative stress induced by salinity could be reduced by the production and accumulation of compatible solutes and osmoprotectants in the plant. In this respect, metabolites of this type could be interesting markers for the improvement of salt stress tolerance in breeding programmes. Results have shown that Populus tremula was able to cope with up to 150 mM NaCl without any effect on plant survival. During stress application, the endogenous level of malondialdehyde did not vary significantly between the treatments, indicating that the level of lipid peroxidation was similar in the control and in the stressed plants. However, proline, spermine, sucrose, mannitol, and raffinose levels increased temporarily or throughout the salt treatment. All these molecules are more or less closely related to antioxidant or osmoprotectant mechanisms during stress, suggesting a key role for these compatible solutes, osmoprotectants, and their metabolism for salt stress resistance. The accumulation of free proline, sucrose and mannitol, and the transitory increase in spermine level observable during low and high NaCl application must be considered as general salt stress reaction markers.

References

  • 1 Alscher R. G., Donahue J. L., Cramer C. L.. Reactive oxygen species and antioxidants: Relationships in green cells.  Physiologia Plantarum. (1997);  100 224-233
  • 2 Asada K.. Radical production and scavenging in chloroplasts. Baker, N. R., ed. Photosynthesis and Environment. Dordrecht; Kluwer Acad. Publ. (1996): 123-150
  • 3 Bates L. S., Waldren R. P., Teare D.. Rapid determination of free proline for water stress studies.  Plant and Soil. (1973);  39 205-207
  • 4 Bjergegaard C., Gulewicz K., Hobowicz M., Jones A., Kadlec P., Kintia P., Kratchanov C., Kratchanova M., Lewandowicz G., Soral-Smietana M., Sorensen H., Urban J.. Carbohydrate chemistry. Hedley, C. L., ed. Carbohydrates in Grain and Legume Seeds. Improving Nutritional Quality and Agronomic Characteristics. CAB International (2001): 15-59
  • 5 Bohnert H. J., Ayoubi P., Borchert C., Bressan R. A., Burnap R. L., Cushman J. C., Cushman M. A., Deyholos M., Fischer R., Galbraith D. W., Hasegawa P. M., Jenks M., Kawasaki S. L., Koiwa H., Kore-eda S., Lee B. H., Michalowski C. B., Misawa E., Nomura M., Ozturk N., Postier B., Prade R., Song C. P., Tanaka Y., Wang H., Zhu J. K.. A genomic approach towards salt stress tolerance.  Plant Physiology and Biochemistry. (2001);  39 295-311
  • 6 Bohnert H. J., Jensen R. G.. Metabolic engineering for increased salt tolerance - the next step: comment.  Australian Journal of Plant Physiology. (1996);  23 661-666
  • 7 Bohnert H. J., Shen B.. Transformation and compatible solutes.  Scientia Horticulturae. (1999);  78 237-260
  • 8 del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J.. Metabolism of oxygen radicals in peroxisomes and cellular implications.  Free Radical Biology and Medicine. (1992);  13 557-580
  • 9 Fryer M. J.. The antioxidant effects of thylakoid vitamin E (α-tocopherol).  Plant Cell Environment. (1992);  15 381-392
  • 10 Ha H. C., Sirisoma N. S., Kuppusamy P., Zweier J. L., Woster P. M., Casero  Jr. R. A.. The natural polyamine spermine functions directly as a free radical scavenger.  Proceedings of the National Academy of Science of USA. (1998);  95 11140-11145
  • 11 Hamilton E. W. III., Heckathorn S. A.. Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine.  Plant Physiology. (2001);  126 1266-1274
  • 12 Hausman J. F., Evers D., Thiellement H., Jouve L.. Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments.  Plant Cell Report. (2000);  19 954-960
  • 13 Hernández J. A., Corpas F. J., Gomez M., del Río L. A., Sevilla F.. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria.  Physiologia Plantarum. (1993);  89 103-110
  • 14 Hernández J. A., Olmos E., Corpas F. J., Sevilla F., del Río L. A.. Salt-induced oxidative stress in chloroplast of pea plants.  Plant Science. (1995);  105 151-167
  • 15 Hodges D. M., DeLong J. M., Forney C. F., Prange R. K.. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds.  Planta. (1999);  207 604-611
  • 16 Hong Z., Lakkineni K., Zhang Z., Verma D. P.. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress.  Plant Physiology. (2000);  122 1129-1136
  • 17 Jain M., Mathur G., Koul S., Sarin N.. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.).  Plant Cell Report. (2001);  20 463-468
  • 18 Kim T. E., Kim S. K., Han T. J., Lee J. S., Chang S. C.. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). .  Physiologia Plantarum. (2002);  115 370-376
  • 19 Kubis J.. Polyamines and “scavenging system”: influence of exogenous spermidine on Halliwell-Asada pathway enzyme activity in barley leaves under water deficit.  Acta Physiologiae Plantarum. (2001);  23 335-341
  • 20 Lester G. E.. Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit.  Plant Science. (2000);  160 105-112
  • 21 Levine A.. Oxidative stress as regulator of environmental responses in plants. Lerner, H. R., ed. Plant Responses to Environmental Stresses from Phytohormone to Genome Reorganization. New York; Marcel Dekker Inc. (1999): 247-264
  • 22 Levitt J.. Responses of Plants to Environmental Stresses. Vol. I: Chilling, Freezing, and High Temperature Stresses, 2nd ed. New York; Academic Press (1980)
  • 23 Muckenschnabel I., Goodman B. A., Williamson B., Lyon G. D., Deighton N.. Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products.  Journal of Experimental Botany. (2002);  53 207-214
  • 24 Munns R.. Comparative physiology of salt and water stress.  Plant Cell and Environment. (2002);  25 239-250
  • 25 Murashige T., Skoog F.. A revised medium for rapid growth and bioassay with tobacco tissue culture.  Physiologia Plantarum. (1962);  15 473-497
  • 26 Noctor G., Foyer C. H.. Ascorbate and glutathione, keeping active oxygen under control.  Annual Review of Plant Physiology Plant Molecular Biology. (1998);  49 249-279
  • 27 Nuccio M. L., Rhodes D., McNeil S. D., Handson A. D.. Metabolic engineering of plants for osmotic stress resistance.  Current Opinion in Plant Biology. (1999);  2 128-134
  • 28 Roy M., Wu R.. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride- stress tolerance.  Plant Science. (2002);  163 987-992
  • 29 Santos C. L., Campos A., Azevedo H., Caldeira G.. In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism.  Journal of Experimental Botany. (2001);  52 351-360
  • 30 Sivakumar P., Sharmila P., Jain V., Pardha Saradhi P.. Sugars have potential to curtail oxygenase activity of Rubisco.  Biochemical and Biophysical Research Communications. (2002);  298 247-250
  • 31 Smirnoff N., Cumbes Q. J.. Hydroxyl radical scavenging activity of compatible solutes.  Phytochemistry. (1989);  28 1057-1060
  • 32 Smith T. A.. Polyamines.  Annual Review of Plant Physiology. (1985);  36 117-143
  • 33 Sun Z. X., Yang H. H., Cui D. C., Zhao C. Z., Zhao S. P.. Analysis of salt resistance on the poplar transferred with salt tolerance gene.  Sheng Wu Gong Cheng Xue Bao. (2002);  18 481-485
  • 34 Walter H. J. P., Geuns J. M.. High speed HPLC analysis of polyamines in plant tissues.  Plant Physiology. (1987);  69 253-257
  • 35 Wilson R., Cataldo A., Andersen C. P.. Determination of total non structural carbohydrates in tree species by high-performance anion-exchange chromatography with pulsed amperometric detection.  Canadian Journal of Forestry Research. (1995);  25 2022-2028
  • 36 Zhu J. K.. Salt and drought stress signal transduction in plants.  Annual Review of Plant Biology. (2002);  53 247-273

L. Jouve

CRP-Gabriel Lippmann, CREBS research unit

162 a, avenue de la Faïencerie

1511 Luxembourg

GD Luxembourg

Email: jouve@crpgl.lu

Section Editor: H. Rennenberg

    >