Subscribe to RSS
DOI: 10.1055/s-2003-43368
Asymmetric PTC Alkylation of Glycine Imines: Variation of the Imine Ester Moiety
Publication History
Publication Date:
26 November 2003 (online)
Abstract
Studies into the enantioselective phase-transfer alkylation of a series of glycine imine esters are presented. Using a quaternary ammonium salt catalyst derived from α-methyl-naphthylamine, high enantioselectivities were obtained in reactions involving imines containing tert-butyl, benzhydryl, and benzyl esters. In contrast, a quaternary ammonium salt catalyst derived from dihydrocinchonidine gave highest enantioselectivities with tert-butyl and ethyl esters. Application of the benzhydryl ester alkylation in the preparation of a differentially protected aspartic acid derivative is also presented.
Key words
amino acids - asymmetric alkylation - phase-transfer catalysis - quaternary ammonium salts
- For recent reviews covering phase-transfer alkylation of glycine imines see:
-
1a
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013 -
1b
O’Donnell MJ. Aldrichimica Acta 2001, 34: 3 -
2a
Lygo B.Allbutt B.James SR. Tetrahedron Lett. 2003, 44: 5629 -
2b
Lygo B.Andrews BI.Crosby J.Peterson JA. Tetrahedron Lett. 2002, 43: 8015 -
2c
Lygo B.Humphreys LD. Tetrahedron Lett. 2002, 43: 6677 -
2d
Lygo B.Crosby J.Peterson JA. Tetrahedron 2001, 57: 6447 -
2e
Lygo B.Crosby J.Lowdon TR.Peterson JA.Wainwright PG. Tetrahedron 2001, 57: 2403 -
2f
Lygo B.Crosby J.Lowdon TR.Wainwright PG. Tetrahedron 2001, 57: 2391 -
2g
Lygo B.Crosby J.Peterson JA. Tetrahedron Lett. 1999, 40: 1385 -
2h
Lygo B.Wainwright PG. Tetrahedron Lett. 1997, 38: 8595 - For examples of asymmetric PTC alkylation of glycine imines other than tert-butyl ester 1a see ref. 1 and:
-
3a
Ooi T.Tayama E.Maruoka K. Angew. Chem. Int. Ed. 2003, 42: 579 ; amides -
3b
Mazon P.Chinchilla R.Najera C.Guillena G.Kreiter R.Gebbink .R JMK.van Koten G. Tetrahedron: Asymmetry 2002, 13: 2181 ; iso-propyl ester -
3c
Vyskocil S.Meca L.Tislerova I.Cisarova I.Polasek M.Harutyunyan SR.Belokon YN.Stead RMJ.Farrugia L.Lockhart SC.Mitchell WL.Kocovsky P. Chem.-Eur. J. 2002, 8: 4633 ; Ni salt of PBP imine - For leading references to asymmetric PTC alkylations of glycine imine1a not covered in ref.1 and ref.2, see:
-
4a
Ooi T.Kameda M.Maruoka K. J. Am. Chem. Soc. 2003, 125: 5139 -
4b
Mase N.Ohno T.Hoshikawa N.Ohishi K.Morimoto H.Yoda H.Takabe K. Tetrahedron Lett. 2003, 44: 4073 -
4c
Park HG.Jeong BS.Yoo MS.Lee JH.Park BS.Kim MJ.Jew SS. Tetrahedron Lett. 2003, 44: 3497 -
4d
Thierry B.Plaquevent JC.Cahard D. Tetrahedron: Asymmetry 2003, 14: 1671 -
4e
Danelli T.Annunziata R.Benaglia M.Cinquini M.Cozzi F.Tocco G. Tetrahedron: Asymmetry 2003, 14: 461 -
4f
Okino T.Takemoto Y. Org. Lett. 2001, 3: 1515 -
4g
Chen G.Deng Y.Gong L.Mi A.Cui X.Jiang Y.Choi MCK.Chan ASC. Tetrahedron: Asymmetry 2001, 12: 1567 -
4h
O’Donnell MJ.Delgado F.Dominguez E.de Blas J.Scott WL. Tetrahedron: Asymmetry 2001, 12: 821 - See for example ref.4a and:
-
5a
Kim S.Lee J.Lee T.Park HG.Kim D. Org. Lett. 2003, 5: 2703 -
5b
Armstrong A.Scutt JN. Org. Lett. 2003, 5: 2331 -
5c
Lygo B.Andrews BI. Tetrahedron Lett. 2003, 44: 4499 -
5d
Boisnard S.Carbonnelle A.-C.Zhu J. Org. Lett. 2001, 3: 2061 -
5e
Lygo B. Tetrahedron Lett. 1999, 40: 1389 - 6
O’Donnell MJ.Polt RL. J. Org. Chem. 1982, 47: 2663 - For examples that illustrate of the utility of this see:
-
7a
Mitchell SA.Pratt MR.Hruby VJ.Polt R. J. Org. Chem. 2001, 66: 2327 -
7b
Tilley JW.Sarabu R.Wagner R.Mulkerins K. J. Org. Chem. 1990, 55: 906 -
7c
Felix AM.Heimer EP.Lambros TJ.Tzougraki C.Meienhofer J. J. Org. Chem. 1978, 43: 4194 - 8
O’Donnell MJ.Sennett WD.Wu S. J. Am. Chem. Soc. 1989, 111: 2353 - 10
Corey EJ.Xu F.Noe MC. J. Am. Chem. Soc. 1997, 119: 12414
References
Representative Procedure: A solution of salt ent-4 (1.2 mg, 1 mol%) and imine 1b (50 mg, 0.12 mmol) in toluene (4 mL) was cooled to 0 °C, degassed, and placed under an argon atmosphere. tert-Butyl bromoacetate (22 µL, 0.14 mmol) was added followed by degassed 15 M aq KOH (1mL). The resulting mixture stirred at 1500 rpm for 45 min, then diluted with H2O (5 mL) and extracted with EtOAc (3 × 4 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. Residual tert-butyl bromoacetate was removed under vacuum (1 mm Hg, r.t.) to afford imine 2b′′′ as a colourless oil (64 mg, 100%, 86% ee). 1H NMR (400 MHz, CDCl3): δ = 7.62-7.60 (2 H, m, ArH), 7.41-7.23 (16 H, m, ArH), 7.16-7.13 (2 H, m, ArH), 6.89 (1 H, s, OCHPh2), 4.58 (1 H, dd, J = 7.5, 5.5 Hz, H-2), 2.99 (1 H, dd, J = 15.5, 5.5 Hz, H-3a), 2.85 (1 H, dd, J = 15.5, 7.5 Hz, H-3b), 1.35 (9H, s, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 171.8 (C), 170.0 (C), 139.9 (C), 139.9 (C), 139.6 (C), 136.0 (C), 130.5 (CH), 129.0 (CH), 128.8 (CH), 128.5 (CH), 128.0 (CH), 128.0 (CH), 127.9 (CH), 127.4 (CH), 127.1 (CH), 80.8 (C), 77.5 (CH), 62.3 (CH), 39.5 (CH2), 28.1 (CH3). HPLC: Chiralpak AD column (150 × 2.1 mm), hexane/i-propanol (97.5/2.5), 0.2 mL/min, Rt = 13.9 min (R)-isomer, 18.8 min (S)-isomer.
Imine 2b′′′ (38 mg) was then dissolved in THF (1 mL) and treated with 15% aq citric acid (1 mL). The resulting solution was stirred at r.t. for 3 h, then washed with Et2O (3 × 2 mL). The aqueous layer was basified (sat. aq K2CO3) and extracted with CHCl3 (3 × 5 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure to afford amine 5 as a colourless oil (22 mg, 85%). 1H NMR (400 MHz, CDCl3): δ = 7.36-7.27 (10 H, m, ArH), 6.92 (1 H, s, OCHPh2), 3.84 (1 H, dd, J = 6.5, 4.5 Hz, H-2), 2.80 (1 H, dd, J = 16.5, 4.5 Hz, H-3a), 2.72
(1 H, dd, J = 16.5, 6.5 Hz, H-3b), 1.88 (2 H, s, broad, NH2), 1.38 (9 H, s, t-Bu). 13C NMR (100 MHz, CDCl3): δ = 173.5 (C), 170.3 (C), 139.8 (C), 128.6 (CH), 128.6 (CH), 128.2 (CH), 128.1 (CH), 127.2 (CH), 127.2 (CH), 81.5 (C), 77.8 (CH), 51.6 (CH), 39.8 (CH2), 28.1 (CH3)