Subscribe to RSS
DOI: 10.1055/s-2003-42770
The Future Impact of Translational Research in Traumatic Brain Injury
Publication History
Publication Date:
02 October 2003 (online)
ABSTRACT
The outcome after traumatic brain injury (TBI) has improved during the past three decades. This has mainly been accomplished through improved neurointensive care. Neuroprotective drugs have been disappointing in past clinical trials, and TBI remains one of few common severe illnesses completely without specific pharmacological therapy. One of the biggest challenges for brain trauma research is finding a way to translate preclinical results to the clinical care of the patients. It is hoped that advances in the understanding of basic molecular injury mechanisms and the possible association of genetic profile with outcome after TBI will soon provide better opportunities for drug development. In this review, we summarize some of the pathophysiological pathways targeted for pharmacological intervention in TBI patients. In order to achieve therapeutic success in the future, the advancement in basic science must develop in concert with standardized methods for monitoring and analyzing neurointensive care data between different trauma centers. The European collaboration BrainIT is a first step in this direction. With this type of approach, neuroprotective drugs may also prove to be beneficial in the clinical setting.
KEYWORDS
Apoptosis - necrosis - neuroprotection - neurointensive care - traumatic brain injury
REFERENCES
- 1 Laurer H L, McIntosh T K. Pharmacologic therapy in traumatic brain injury: update on experimental treatment strategies. Curr Pharm Des . 2001; 7 1505-1516
- 2 McIntosh T K, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma . 1998; 15 731-769
- 3 Narayan R K, Michel M E, Ansell B. et al . Clinical trials in head injury. J Neurotrauma . 2002; 19 503-557
- 4 Kerr J F, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer . 1972; 26 239-257
- 5 Horvitz H R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans Cancer Res . 1999; 59 (suppl 7) S1701-S1706
- 6 Choi D, Maulucci-Gedde M, Kriegstein A. Glutamate neurotoxicity in cortical cell culture. J Neurosci . 1987; 7 357-368
- 7 Faden A I, Demediuk P, Panter S S, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science . 1989; 244 798-800
- 8 Nilsson P, Hillered L, Pontén U. et al . Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab . 1990; 10 631-637
- 9 Persson L, Hillered L. Chemical monitoring of neurosurgical intensive care patients using intracerebral microdialysis. J Neurosurg . 1992; 76 72-80
- 10 McIntosh T K, Vink R, Soares H, Hayes R, Simon R. Effects of the N-methyl-D-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma . 1989; 6 247-259
- 11 Gill R, Foster A C, Woodruff G N. Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci . 1987; 7 3343-3349
- 12 Rao V L, Dogan A, Todd K G, Bowen K K, Dempsey R J. Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res . 2001; 911 96-100
- 13 Lewén A, Matz P, Chan P. Free radical pathways in CNS injury. J Neurotrauma . 2000; 17 871-890
- 14 Bondy S C, LeBel C P. The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Radic Biol Med . 1993; 14 633-642
- 15 Dugan L L, Sensi S L, Canzoniero L M. et al . Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci . 1995; 15 6377-6388
- 16 Cheng Y, Sun A Y. Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurons. Neurochem Res . 1994; 19 1557-1564
- 17 Lafon Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature . 1993; 364 535-537
- 18 Pellegrini Giampietro E D, Cherici G, Alesiani M, Carla V, Moroni F. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci . 1990; 10 1035-1041
- 19 Sengpiel B, Preis E, Krieglstein J, Prehn J H. NMDA-induced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur J Neurosci . 1998; 10 1903-1910
- 20 Kowaltowski A J, Vercesi A E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med . 1999; 26 463-471
- 21 Kowaltowski A J, Castilho R F, Vercesi A E. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am J Physiol . 1995; 269 C141-C147
- 22 Weisiger R A, Fridovich I. Superoxide dismutase organelle specificity. J Biol Chem . 1973; 248 4793-4796
- 23 Fridovich I. Superoxide dismutases. Annu Rev Biochem . 1975; 44 147-159
- 24 Oury T D, Card J P, Klann E. Localization of extracellular superoxide dismutase in adult mouse brain. Brain Res . 1999; 850 96-103
- 25 Gardner A M, Xu F H, Fady C. et al . Apoptotic versus nonapoptotic cytotoxicity induced by hydrogen peroxide. Free Radic Biol Med . 1997; 22 73-83
- 26 Lewén A, Sugawara T, Gasche Y, Fujimura M, Chan P H. Oxidative cellular damage and the reduction of APE/Ref-1 expression after traumatic brain injury. Neurobiol Dis . 2001; 8 380-390
- 27 Lewén A, Fujimura M, Sugawara T, Matz P, Copin J C, Chan P H. Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J Cereb Blood Flow Metab . 2001; 21 914-920
- 28 Lewén A, Skoglösa Y, Clausen F. et al . Paradoxical increase in neuronal DNA fragmentation after neuroprotective free radical scavenger treatment in experimental traumatic brain injury. J Cereb Blood Flow Metab . 2001; 21 344-350
- 29 Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett . 1998; 102-103 139-142
- 30 Leist M, Single B, Castoldi A F, Kuhnle S, Nicotera P. Intracellular adenosine trisphosphate (ATP) concentration: a switch in the decision between apoptosis or necrosis. J Exp Med . 1997; 185 1481-1486
- 31 Eliasson M J, Sampei K, Mandir A S. et al . Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med . 1997; 3 1089-1095
- 32 Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell . 2002; 9 459-470
- 33 Reed J C. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med . 2001; 7 314-319
- 34 Enari M, Sakahira H, Yooyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature . 1998; 391 43-50
- 35 Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell . 1997; 89 175-184
- 36 Liu X, Kim C N, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirements for dATP and cytochrome c. Cell . 1996; 86 147-157
- 37 Hakem R, Hakem A, Duncan G S. et al . Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell . 1998; 94 339-352
- 38 Zou H, Henzel W J, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell . 1997; 90 405-413
- 39 Kuida K, Haydar T F, Kuan C Y. et al . Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell . 1998; 94 325-337
- 40 Slee E A, Harte M T, Kluck R M. et al . Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol . 1999; 144 281-292
- 41 Fujimura M, Morita-Fujimura Y, Murakami K, Kawase M, Chan P H. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab . 1998; 18 1239-1247
- 42 Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan P H. Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global ischemia. J Neurosci . 1999; 19 RC39(1-6)
- 43 Buki A, Okonkwo D O, Wang K K, Povlishock J T. Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci . 2000; 20 2825-2834
- 44 Fujimura M, Morito-Fujimora Y, Noshita N, Sugawara T, Kawase M, Chan P H. The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci . 2000; 20 2817-2824
- 45 Cai J, Jones D P. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem . 1998; 273 11401-11404
- 46 Jurgensmeier J M, Xie Z, Deveraux Q, Ellerby L, Bredersen D, Reed J C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci U S A . 1998; 95 4997-5002
- 47 Narita M, Shimizu S, Ito T. et al . Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A . 1998; 95 14681-14686
- 48 Cassarino D S, Parks J K, Parker Jr D W, Bennett Jr P J. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta . 1999; 1453 49-62
- 49 Ghafourifar P, Schenk U, Klein S D, Richter C. Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria: evidence for intramitochondrial peroxynitrite formation. J Biol Chem . 1999; 274 31185-31188
- 50 Deveraux Q L, Reed J C. IAP family proteins-suppressors of apoptosis. Genes Dev . 1999; 13 239-252
- 51 Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell . 2001; 8 613-621
- 52 Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death?. J Cell Sci . 2002; 115(Pt 24) 4727-4734
- 53 Clark R S, Kochanek P M, Watkins S C. et al . Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem . 2000; 74 740-753
- 54 Keane R W, Kraydieh S, Lotocki G, Alonso O F, Aldana P, Dietrich W D. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab . 2001; 21 1189-1198
- 55 Fink K B, Andrews L J, Butler W E. et al . Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience . 1999; 94 1213-1218
- 56 Beer R, Franz G, Schopf M. et al . Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab . 2000; 20 669-677
- 57 Knoblach S M, Nikolaeva M, Huang X. et al . Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J Neurotrauma . 2002; 19 1155-1170
- 58 Zhang X, Chen J, Graham S H. et al . Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem . 2002; 82 181-191
- 59 Beer R, Franz G, Krajewski S. et al . Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. J Neurochem . 2001; 78 862-873
- 60 Franz G, Beer R, Intemann D. et al . Temporal and spatial profile of Bid cleavage after experimental traumatic brain injury. J Cereb Blood Flow Metab . 2002; 22 951-958
- 61 Yakovlev A G, Knoblach S M, Fan L, Fox G B, Goodnight R, Faden A I. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci . 1997; 17 7415-7424
- 62 Skoglösa Y, Lewén A, Takei N, Hillered L, Lindholm D. Regulation of pituitary adenylate cyclase activating polypeptide and its receptor type 1 after traumatic brain injury: comparison with brain derived neurotrophic factor and the induction of neuronal cell death. Neuroscience . 1999; 90 235-247
- 63 Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan P H. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci . 2002; 22 7923-7930
- 64 Segal R A, Greenberg M E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci . 1996; 19 463-489
- 65 Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature . 2001; 410 37-40
- 66 Peyssonnaux C, Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell . 2001; 93 53-62
- 67 Alessandrini A, Namura S, Moskowitz M A, Bonventre J V. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci U S A . 1999; 96 12866-12869
- 68 Mori T, Wang X, Jung J C. et al . Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J Cereb Blood Flow Metab . 2002; 22 444-452
- 69 Wang X, Mori T, Jung J C, Fini M E, Lo E H. Secretion of matrix metalloproteinase-2 and -9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. J Neurotrauma . 2002; 19 615-625
- 70 Namura S, Iihara K, Takami S. et al . Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A . 2001; 98 11569-11574
- 71 Yuan J, Yankner B A. Apoptosis in the nervous system. Nature . 2000; 407 802-809
- 72 Noshita N, Lewen A, Sugawara T, Chan P H. Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab . 2001; 21 1442-1450
- 73 Noshita N, Lewen A, Sugawara T, Chan P H. Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis . 2002; 9 294-304
- 74 Gill R, Soriano M, Blomgren K. et al . Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab . 2002; 22 420-430
- 75 Loetscher H, Niederhauser O, Kemp J, Gill R. Is caspase-3 inhibition a valid therapeutic strategy in cerebral ischemia?. Drug Discov Today . 2001; 6 671-680
- 76 Chen J, Nagayama T, Jin K. et al . Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci . 1998; 18 4914-4928
- 77 Loddick S A, MacKenzie A, Rothwell N J. An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport . 1996; 7 1465-1468
- 78 Endres M, Namura S, Shimizu-Sasamata M. et al . Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab . 1998; 18 238-247
- 79 Endres M, Wang Z Q, Namura S, Waeber C, Moskowitz M A. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab . 1997; 17 1143-1151
- 80 Abdelkarim G E, Gertz K, Harms C. et al . Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int J Mol Med . 2001; 7 255-260
- 81 LaPlaca M C, Zhang J, Raghupathi R. et al . Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma . 2001; 18 369-376
- 82 Muizelaar J P, Marmarou A, Young H F. et al . Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg . 1993; 78 375-382
- 83 Young B, Runge J W, Waxman K S. et al . Effects of pegorgotein on neurologic outcome of patients with severe head injury. A multicenter, randomized controlled trial. JAMA . 1996; 276 538-543
- 84 Sydserff S G, Borelli A R, Green A R, Cross A J. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol . 2002; 135 103-112
- 85 Kuroda S, Tsuchidate R, Smith M L, Maples K R, Siesjo B K. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab . 1999; 19 778-787
- 86 Zhao Z, Cheng M, Maples K R, Ma J Y, Buchan A M. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res . 2001; 909 46-50
- 87 Marshall J W, Duffin K J, Green A R, Ridley R M. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke . 2001; 32 190-198
- 88 Marklund N, Clausen F, McIntosh T K, Hillered L. Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat. J Neurotrauma . 2001; 18 821-832
- 89 Zhao Q, Pahlmark K, Smith M L, Siesjo B K. Delayed treatment with the spin trap alpha-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand . 1994; 152 349-350
- 90 Naritomi H. Neuroprotective therapy for the treatment of acute ischemic stroke. Rinsho Shinkeigaku . 2001; 41 1060-1063
- 91 Friberg H, Wieloch T. Mitochondrial permeability transition in acute neurodegeneration. Biochimie . 2002; 84 241-250
- 92 Friberg H, Connern C, Halestrap A P, Wieloch T. Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem . 1999; 72 2488-2497
- 93 Okonkwo D O, Buki A, Siman R, Povlishock J T. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport . 1999; 10 353-358
- 94 Okonkwo D O, Povlishock J T. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab . 1999; 19 443-451
- 95 Scheff S W, Sullivan P G. Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma . 1999; 16 783-792
- 96 Riess P, Bareyre F M, Saatman K E. et al . Effects of chronic, post-injury cyclosporin A administration on motor and sensorimotor function following severe, experimental traumatic brain injury. Restor Neurol Neurosci . 2001; 18 1-8
- 97 Sullivan P G, Rabchevsky A G, Hicks R R, Gibson T R, Fletcher-Turner A, Scheff S W. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience . 2000; 101 289-295
- 98 Sadamoto Y, Igase K, Sakanaka M. et al . Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun . 1998; 253 26-32
- 99 Bernaudin M, Marti H H, Roussel S. et al . A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab . 1999; 19 643-651
- 100 Buemi M, Grasso G, Corica F. et al . In vivo evidence that erythropoietin has a neuroprotective effect during subarachnoid hemorrhage. Eur J Pharmacol . 2000; 392 31-34
- 101 Siren A L, Fratelli M, Brines M. et al . Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A . 2001; 98 4044-4049
- 102 Brines M L, Ghezzi P, Keenan S. et al . Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A . 2000; 97 10526-10531
- 103 Gorio A, Gokmen N, Erbayraktar S. et al . Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A . 2002; 99 9450-9455
- 104 Digicaylioglu M, Lipton S A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature . 2001; 412 641-647
- 105 Wen T C, Sadamoto Y, Tanaka J. et al . Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res . 2002; 67 795-803
- 106 Ehrenreich H, Hasselblatt M, Dembowski C. et al . Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med . 2002; 8 495-505
- 107 Reilly P L, Graham D I, Adams J H, Jennett B. Patients with head injury who talk and die. Lancet . 1975; 2 375-377
- 108 Rose J, Valtonen S, Jennett B. Avoidable factors contributing to death after head injury. Br Med J . 1977; 2 615-618
- 109 Graham D I, Adams J H, Doyle D. Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci . 1978; 39 213-234
- 110 Graham D I, Ford I, Adams J H. et al . Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry . 1989; 52 346-350
- 111 Elf K, Nilsson P, Enblad P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit Care Med . 2002; 30 2129-2134
- 112 Jones P A, Andrews P J, Midgley S. et al . Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol . 1994; 6 4-14
- 113 Signorini D F, Andrews P J, Jones P A, Wardlaw J M, Miller J D. Adding insult to injury: the prognostic value of early secondary insults for survival after traumatic brain injury. J Neurol Neurosurg Psychiatry . 1999; 66 26-31
- 114 Chambers I R, Treadwell L, Mendelow A D. The cause and incidence of secondary insults in severely head-injured adults and children. Br J Neurosurg . 2000; 14 424-431