Aktuelle Rheumatologie 2003; 28(4): 187-195
DOI: 10.1055/s-2003-41639
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Immunologie und Sport

Immunology and SportsF. C. Mooren1
  • 1Institut für Sportmedizin (Direktor Prof. Dr. med. K. Völker), Universitätsklinikum Münster
Further Information

Publication History

Publication Date:
25 August 2003 (online)

Zusammenfassung

Eine Vielzahl von Erfahrungsberichten vermittelt ein janusköpfiges Bild des Einflusses von körperlicher Belastung auf das Immunsystem. Viele Sportler berichten darüber, dass sie seit Beginn ihres Trainings wesentlich seltener Probleme mit Infektionen, insbesondere des oberen Respirationstraktes, zu tun haben. Andererseits gibt es eine Reihe von Hinweisen, dass es nach intensiveren Belastungen, z. B. nach Marathon- oder Triathlon-Wettkämpfen, in den darauf folgenden Tagen zu einer erhöhten Infektinzidenz kommt. Die vorliegende Übersichtsarbeit versucht die Zweischneidigkeit der Interaktionen zwischen Sport und Immunsystem und ihren möglichen Bezug zur Belastungsintensität darzustellen. Dazu werden die Effekte akuter und chronischer sportlicher Belastung auf das Immunsystem sowie ihre potenziell zugrunde liegenden Mediator-Mechanismen diskutiert. Abschließend werden die hierzu aktuellen Konzepte über den Zusammenhang von Belastungsintensität und Immunsuppression (Theorie des offenen Fensters) sowie der Belastungsintensität und des Infektionsrisikos (J-Kurve) präsentiert.

Abstract

There is no debate that physical activity is an important modulator of the immune system. During the last 20 years several investigations described the effects of exercise on circulating number and on the function of many immune system components. Recent studies focus predominantly on the response of the immune system to acute exercise. During and immediately after exercise the leukocyte count in peripheral blood samples increases. After exercise granulocytes and lymphocytes show a divergent behaviour. While granulocytes show a delayed phase of an increased count, the lymphocyte count falls below pre-exercise levels. In addition to the altered cell numbers acute exercise affects numerous cellular functions like lymphocyte proliferation and immune globuline synthesis, natural killer cell activity and neutrophile functions like adhesion migration, phagocytosis and oxidative burst. These effects are mediated by multiple mechanisms such as exercise-induced changes in hormonal and inflammatory mediators. Moreover, metabolic changes like increases in free fatty acids and decreases in plasma glutamine as well as changes in redox status have been shown to affect immune cell function. Less information is available on the effects of chronic exercise or training on the immune system. There is a tendency towards slightly lower numbers of lymphocytes in the peripheral blood. Additionally most recent investigations showed an improved activity of the natural killer cells after training. Finally, the present concepts of exercise immunology, namely the open window hypothesis, which describes the dependence of post exercise immuno-suppression on exercise intensity, and the J-curve, which describes the dependence of the infection risk on exercise intensity, are presented.

Literatur

  • 1 Ahlborg B, Ahlborg G. Exercise leukocytosis with and without beta-adrenergic blockade.  Acta Med Scand. 1970;  187 (4) 241-246
  • 2 Alessio H M. Exercise-induced oxidative stress.  Med Sci Sports Exerc. 1993;  25 (2) 218-224
  • 3 Baslund B, Lyngberg K, Andersen V. et al . Effect of 8 wk of bicycle training on the immune system of patients with rheumatoid arthritis.  J Appl Physiol. 1993;  75 (4) 1691-1695
  • 4 Bruunsgaard H, Hartkopp A, Mohr T. et al . In vivo cell mediated immunity and vaccination response following prolonged, intense exercise.  Med Sci Sports Exerc. 1997;  29 (9) 1176-1181
  • 5 Bruunsgaard H, Jensen M S, Schjerling P. et al . Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans.  Life Sci. 1999;  65 (24) 2623-2633
  • 6 Calder P C. Dietary fatty acids and lymphocyte functions.  Proc Nutr Soc. 1998;  57 (4) 487-502
  • 7 Ceddia M A, Price E A, Kohlmeier C K. et al . Differential leukocytosis and lymphocyte mitogenic response to acute maximal exercise in the young and old.  Med Sci Sports Exerc. 1999;  31 (6) 829-836
  • 8 Dandona P, Suri M, Hamouda W. et al . Hydrocortisone-induced inhibition of reactive oxygen species by polymorphonuclear neutrophils.  Crit Care Med. 1999;  27 (11) 2442-2444
  • 9 Eskola J, Ruuskanen O, Soppi E. et al . Effect of sport stress on lymphocyte transformation and antibody formation.  Clin Exp Immunol. 1978;  32 (2) 339-345
  • 10 Flescher E, Tripoli H, Salnikow K. et al . Oxidative stress suppresses transcription factor activities in stimulated lymphocytes.  Clin Exp Immunol. 1998;  112 (2) 242-247
  • 11 Gabriel H, Urhausen A, Kindermann W. Mobilisation of circulating leukocyte and lymphocyte subpopulations during and after short, anaerobic exercise.  Eur J Appl Physiol Occup Physiol. 1992;  65 164-170
  • 12 Garrey W E, Bryan W R. Variations in white blood cell counts.  Physiol Rev. 1935;  15 597-638
  • 13 Gleeson M, Pyne D B, McDonald W A. Pneumococcal antibody responses in elite swimmers.  Clin Exp Immunol. 1996;  105 238-244
  • 14 Gleeson M, McDonald W A, Cripps A W. et al . The effect on immunity of long-term intensive training in elite swimmers.  Clin Exp Immunol. 1995;  102 210-216
  • 15 Hack B, Strobel G, Weiss M. et al . PMN cell counts and phagocytic activity of highly trained athletes depend on training period.  J Appl Physiol. 1994;  77 1731-1735
  • 16 Haq A, Al-Hussein K, Lee J. et al . Changes in peripheral blood lymphocyte subsets associated with marathon running.  Med Sci Sports Exerc. 1993;  25 186-190
  • 17 Hetherington S V, Quie P G. Human polymorphonuclear leukocytes of the bone marrow, circulation, and marginated pool: function and granule protein content.  Am J Hematol. 1985;  20 (3) 235-246
  • 18 Hoffman-Goetz L, Zajchowski S. In vitro apoptosis of lymphocytes after exposure to levels of corticosterone observed following submaximal exercise.  J Sports Med Phys Fitness. 1999;  39 (4) 269-274
  • 19 Ibfelt T, Petersen E W, Bruunsgaard H. et al . Exercise-induced change in type 1 cytokine-producing CD8+ T cells is related to a decrease in memory T cells.  J Appl Physiol. 2002;  93 (2) 645-648
  • 20 Jeukendrup A E, Saris W H, Wagenmakers A J. Fat metabolism during exercise: a review. Part I: fatty acid mobilization and muscle metabolism.  Int J Sports Med. 1998;  19 (4) 231-244
  • 21 Kappel M, Tvede N, Galbo H. et al . Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine.  J Appl Physiol. 1991;  70 (6) 2530-2534
  • 22 Leaf D A, Kleinman M T, Hamilton M. et al . The effect of exercise intensity on lipid peroxidation.  Med Sci Sports Exerc. 1997;  29 (8) 1036-1039
  • 23 Mackinnon L T. Chronic exercise training effects on immune function.  Med Sci Sports Exerc. 2000;  32 (7 Suppl) S369-S376
  • 24 Mackinnon L T, Chick T W, van As A. et al . Decreased secretory immunoglobulins following intense endurance exercise.  Sports Training Med Rehabil. 1989;  1 209-218
  • 25 Michaud D, Giovannucci S, Willett E. et al . Physical activity, obesity, height, and the risk of pancreatic cancer.  JAMA. 2001;  286 (8) 921-929
  • 26 Mitchell J, Pizza F, Paquet A. et al . Influence of carbohydrate status on immune responses before and after endurance exercise.  J Appl Physiol. 1998;  84 1917-1925
  • 27 Mooren F C, Blöming D, Lechtermann A. et al . Lymphocyte apoptosis after exhaustive and moderate exercise.  J Appl Physiol. 2002;  93 (1) 147-153
  • 28 Mooren F C, Lechtermann A, Pospiech S. et al . Decoupling of intracellular calcium signaling in granulocytes after exhaustive exercise.  Int J Sports Med. 2001;  22 (5) 323-328
  • 29 Mooren F C, Völker K. Exercise-induced modulation of intracellular signaling pathways.  Exerc Immunol Rev. 2001;  7 32-65
  • 30 Mooren F C, Siemer M, Lechtermann A. et al . Exhaustive exercise affects migration of neutrophil granulocytes.  Med Sci Sports Exerc. 2002;  34 (Suppl.) S48
  • 31 Nieman D C. Exercise, upper respiratory tract infection, and the immune system.  Med Sci Sports Exerc. 1994;  26 (2) 128-139
  • 32 Nieman D C, Buckley K S, Henson D A. et al . Immune function in marathon runners versus sedentary controls.  Med Sci Sports Exerc. 1995;  27 (7) 986-992
  • 33 Nieman D C, Henson D A, Gusewitch G. et al . Physical activity and immune function in elderly women.  Med Sci Sports Exerc. 1993c;  25 (7) 823-831
  • 34 Nieman D C, Miller A R, Henson D A. Effect of high- versus moderate-intensity exercise on lymphocyte subpopulations and proliferative response.  Int J Sports Med. 1994;  15 199-206
  • 35 Nieman D C, Miller A R, Henson D A. Effects of high- vs moderate-intensity exercise on natural killer cell activity.  Med Sci Sports Exerc. 1993a;  25 1126-1134
  • 36 Nieman D C, Henson D A, Gusewitch G. Physical activity and immune function in elderly women.  Med Sci Sports Exerc. 1993b;  25 823-831
  • 37 Nieman D C, Nehlsen-Cannarella S L, Donohue K M. The effects of acute moderate exercise on leukocyte and lymphocyte subpopulations.  Med Sci Sports Exerc. 1991;  23 578-585
  • 38 Nieman D C, Nehlsen-Cannarella S L, Markoff P A. The effects of moderate exercise training on natural killer cells and acute upper respiratory tract infections.  Int J Sports Med. 1990;  11 467-473
  • 39 Peake L M. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action.  Exerc Immunol Rev. 2002;  8 49-100
  • 40 Pedersen B K, Nielsen H B. Acute exercise and the immune system. Pedersen B Exercise immunology Austin (Texas); Landes Bioscience 1997: 5-38
  • 41 Peters C, Lötzerich H, Niemeier B. et al . Influence of a moderate exercise training on natural killer cytotoxicity and personality traits in cancer patients.  Anticancer Res. 1994;  14 (3A) 1033-1036
  • 42 Pyne D B, Baker M S, Fricker P A. et al . Effects of an intensive 12-wk training program by elite swimmers on neutrophil oxidative activity.  Med Sci Sport Exerc. 1995;  27 536-542
  • 43 Rall L C, Roubenoff R, Cannon J G. et al . Effects of progressive resistance training on immune response in aging and chronic inflammation.  Med Sci Sports Exerc. 1996;  28 (11) 1356-1365
  • 44 Rasmussen L B, Kiens B, Pedersen B K. et al . Effect of diet and plasma fatty acid composition on immune status in elderly men.  Am J Clin Nutr. 1994;  59 (3) 572-577
  • 45 Rennie M J, Edwards R H, Krywawych S. Effects of exercise on protein turnover in man.  Clin Sci. 1981;  61 627-639
  • 46 Rohde T, Maclean D A, Pedersen B K. Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.  Med Sci Sports Exerc. 1998;  30 856-862
  • 47 Rohde T, Maclean D, Pedersen B K. Glutamine, lymphocyte proliferation and cytokine production.  Scand J Immunol. 1996;  44 648-650
  • 48 Rola-Pleszczynski M, Bolduc D, St-Pierre S. The effects of vasoactive intestinal peptide on human natural killer cell function.  J Immunol. 1985;  135 (4) 2569-2573
  • 49 Roper R L, Phipps R P. Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis.  J Immunol. 1992;  149 (9) 2984-2991
  • 50 Roper R L, Conrad D H, Brown D M. et al . Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis.  J Immunol. 1990;  145 (8) 2644-2651
  • 51 Rowbottom D G, Green K J. Acute exercise effects on the immune system.  Med Sci Sports Exerc. 2000;  32 (7 Suppl) S396-S405
  • 52 Schünemann H, Ascher G, Jänicke F. Brustkrebs und Sport.  Dtsch Z Sportmed. 1993;  44 491-503
  • 53 Shinkai S, Kohno H, Kimura K. et al . Physical activity and immune senescence in men.  Med Sci Sports Exerc. 1995;  27 (11) 1516-1526
  • 54 Singh A, Zelazowska E B, Petrides J S. et al . Lymphocyte subset responses to exercise and glucocorticoid suppression in healthy men.  Med Sci Sports Exerc. 1996;  28 (7) 822-828
  • 55 Sirianni M C, Annibale B, Tagliaferri F. et al . Modulation of human natural killer activity by vasoactive intestinal peptide (VIP) family. VIP, glucagon and GHRF specifically inhibit NK activity.  Regul Pept. 1992;  5; 38 (1) 79-87
  • 56 Smith L L. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress?.  Med Sci Sports Exerc. 2000;  32 (2) 317-331
  • 57 Steensberg A, Keller C, Starkie R L. et al . IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle.  Am J Physiol. 2002;  283 (6) E 1272-1278
  • 58 Steensberg A, Toft A D, Bruunsgaard H. et al . Strenuous exercise decreases the percentage of type 1 T cells in the circulation.  J Appl Physiol. 2001;  91 (4) 1708-1712
  • 59 Steindorf K, Schmidt M, Kropp S. et al . Case-control study of physical activity and breast cancer risk among premenopausal women in Germany.  Am J Epidemiol. 2003;  157 (2) 121-130
  • 60 Stock C, Schaller K, Baum M. et al . Catecholamines, lymphocyte subsets, and cyclic adenosine monophosphate production in mononuclear cells and CD4+ cells in response to submaximal resistance exercise.  Eur J Appl Physiol Occup Physiol. 1995;  71 (2-3) 166-167
  • 61 Suzuki K, Totsuka M, Nakaji S. et al . Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage.  J Appl Physiol. 1999;  87 (4) 1360-1367
  • 62 Titinchi S, Clark B. Alpha 2-adrenoceptors in human lymphocytes: direct characterisation by [3H]yohimbine binding.  Biochem Biophys Res Commun. 1984;  121 (1) 1-7
  • 63 Tomasi T B, Trudeau F B, Czerwinski D. et al . Immune parameters in athletes before and after strenuous exercise.  J Clin Immunol. 1982;  2 173-178
  • 64 Tvede N, Kappel M, Klarlund K. et al . Evidence that the effect of bicycle exercise on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine.  Int J Sports Med. 1994;  15 (2) 100-104
  • 65 Tvede N, Heilmann C, Halkjaer-Kristensen J. et al . Mechanisms of B-lymphocyte suppression induced by acute physical exercise.  J Clin Lab Immunol. 1989;  30 169-173

PD Dr Frank Ch. Mooren

Institut für Sportmedizin, Universitätsklinikum Münster

Horstmarer Landweg 39

48129 Münster

Email: mooren@uni-muenster.de

    >