Plant Biol (Stuttg) 2003; 5(3): 255-264
DOI: 10.1055/s-2003-40796
Original Paper

Georg Thieme Verlag Stuttgart · New York

Ultrastructural Changes in Cambial Cell Derivatives during Xylem Differentiation in Poplar

M. Arend 1 , J. Fromm 1
  • 1Fachgebiet Angewandte Holzbiologie, Technische Universität München, München, Germany
Further Information

Publication History

Publication Date:
22 July 2003 (online)

Abstract

The changes in cellular structures that occur in cambial cell derivatives during xylogenesis were examined in Populus trichocarpa Torr et Gray. During dormancy, the cells of the vascular cambium are characterised by dense cytoplasm, many small vacuoles and lipid bodies. During cambial activation, cambial cells are highly vacuolated, the cytoplasm is rich in organelles and the nucleus contains distinctly enlarged nucleoli. The plasma membrane forms vesicle-filled invaginations which mediate uptake of vesicular material into the vacuole. The mitotic patterns in dividing fusiform cells are fragmentary due to their strong vacuolisation. During cell enlargement, cambial cell derivatives remain strongly vacuolated and cytoplasmic structures are similar to active fusiform cells. From the beginning of secondary cell wall formation many changes in cytoplasmic structures occur in newly-formed fibres and vessels. In fibres, the cytoplasm is characterised by components of secondary cell wall synthesis, as indicated by increased amounts of endoplasmic reticulum, vesicle-producing dictyosomes and microtubules. In contrast, vessels show a more or less distinct occurrence of these components and remain more strongly vacuolated than fibres. Similar to cambial cells, a distinct flow of vesicular material into the vacuole through invaginations of the plasma membrane is apparent in fibres, as well as in vessels. After completion of the secondary cell walls, the loss of tonoplast integrity causes the collapse of the vacuole and initiates cell death in vessels and fibres. In vessels the tonoplast exhibits unusually strong staining prior to the collapse of the vacuole, indicating subsequent cell death. Overall, our results indicate an important role for the vacuole in the xylogen differentiation of cambial derivatives.

References

  • 1 Arend M., Fromm J. H.. Seasonal variation in the K, Ca and P content and distribution of plasma membrane H+-ATPase in the cambium of Populus trichocarpa. . Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 67-70
  • 2 Arend M., Weisenseel M. H., Brummer M., Oßwald W., Fromm J. H.. Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants.  Plant Physiol. (2002);  129 1651-1663
  • 3 Barnett J. R.. Tracheid differentiation in Pinus radiata. .  Wood Sci Tech. (1977);  11 83-92
  • 4 Barnett J. R.. Secondary xylem cell development. Barnett, J. R., ed. Xylem Cell Development. Turnbridge Wells; Castle House (1981): 47-95
  • 5 Catesson A. M., Funada R., Robert-Baby D., Quinet-Szely M., Chu-Ba J., Goldberg R.. Biochemical and cytochemical cell wall changes across the cambial zone.  IAWA Journal. (1994);  15 91-101
  • 6 Chaffey N.. Cambium: old challenges - new opportunities.  Trees. (1999);  13 138-151
  • 7 Chaffey N., Barnett J., Barlow P.. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules.  Planta. (1999);  208 19-30
  • 8 Chaffey N., Barlow P., Sundberg B.. Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula × tremuloides) as the model species.  Tree Physiol. (2002);  22 239-249
  • 9 Donaldson L. A.. Lignification and lignin topochemistry - an ultrastructural view.  Phytochemistry. (2001);  57 839-873
  • 10 Esau K.. Plant anatomy. New York; John Wiley and Sons (1965): 735
  • 11 Farrar J. J., Evert R. F.. Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. .  Trees. (1997 a);  11 191-202
  • 12 Farrar J. J., Evert R. F.. Ultrastructure of cell division in the fusiform cells of the vascular cambium of Robinia pseudoacacia. .  Trees. (1997 b);  11 203-215
  • 13 Follet-Gueye M. L., Ermel F. F., Vian B., Catesson A. M., Goldberg R.. Pectin remodelling during cambial derivative differentiation. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 289-294
  • 14 Fukuda H.. Programmed cell death of tracheary elements as a paradigm in plants.  Plant Molecular Biology. (2000);  44 245-253
  • 15 Funada R., Furusawa O., Shibagaki M., Miura H., Miura T., Abe H., Ohtani J.. The role of cytoskeleton in secondary xylem differentiation in conifers. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 255-264
  • 16 Greenberg J.. Programmed cell death: a way of life for plants.  Proc Natl Acad Sci USA. (1996);  93 12094-12097
  • 17 Groover A., DeWitt N., Heidel A., Jones A.. Programmed cell death of plant tracheary elements differentiating in vitro.  Protoplasma. (1997);  196 197-211
  • 18 Groover A., Jones A. M.. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis.  Plant Physiol. (1999);  119 375-384
  • 19 Grünwald C., Ruel K., Kim Y. S., Schmitt U.. On the cytochemistry of cell wall formation in poplar trees.  Plant Biology. (2002);  4 13-21
  • 20 Gugliemino N., Liberman M., Jauneau A., Vian B., Catesson A. M., Goldberg R.. Pectin immunolocalization and calcium visualization in differentiating derivatives from poplar cambium.  Protoplasma. (1997);  199 151-160
  • 21 Iliev I., Savidge R.. Proteases in relation to the earliest stage of xylogenesis in Pinus banksiana Lamb. Stems. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 277-288
  • 22 Kuhn A. J., Schröder W. H., Bauch J.. On the distribution and transport of mineral elements in xylem, cambium and phloem of spruce (Picea abies [L.] Karst.).  Holzforschung. (1997);  51 487-496
  • 23 Kuriyama H.. Loss of tonoplast integrity programmed in tracheary element differentiation.  Plant Physiol. (1999);  121 763-774
  • 33 Langer K., Ache P., Geiger D., Stinzing A., Arend M., Wind C., Regan S., Fromm J., Hedrich R.. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis.  Plant J. (2002);  32 997-1009
  • 24 Larson P. A.. The Vascular Cambium. Berlin; Springer Verlag (1994): 725
  • 25 Marschner H.. Mineral nutrition of higher plants (2nd ed.) San Diego; Academic Press (1995): 889
  • 26 Marty F.. Plant vacuoles.  Plant Cell. (1999);  11 587-600
  • 27 O'Brien T. P.. The primary xylem. Barnett J. R., ed. Xylem Cell Development. Turnbridge Wells; Castle House (1981): 47-95
  • 28 Samuels A. L., Rensing K. H., Douglas C. J., Mansfield S. D., Dharmawardhana D. P., Ellis B. E.. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. .  Planta. (2002);  216 72-82
  • 29 Savidge R. A.. Xylogenesis, genetic and environmental regulation.  IAWA Journal,. (1996);  17 (3) 269-310
  • 30 Sennerby-Forsse L.. Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology.  Physiol. Plant.. (1986);  67 529-537
  • 34 Spurr A. E.. A low-viscosity epoxy resin embedding medium for electron microscopy.  J Ultrastruct Res. (1969);  26 31-41
  • 31 Timell T. E.. Ultrastructure of the dormant and active cambial zones and the dormant phloem associated with the formation of normal and compression woods in Picea abies (L.)  Karst. State Univ NY Coll For Tech Bull. (1973);  96 pp.94
  • 32 Wodzicki T., Brown C.. Organization and breakdown of the protoplast during maturation of pine tracheids.  Am J Bot. (1973);  60 632-640

M. Arend

Technische Universität München
Fachgebiet Angewandte Holzbiologie

Winzererstaße 45

80797 München

Germany

Email: arend@holz.forst.tu-muenchen.de

Section Editor: H. Rennenberg