Semin Plast Surg 2003; 17(1): 107-118
DOI: 10.1055/s-2003-39861
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Skin Substitutes: Past, Present, and Future

Charles E. Butler
  • Department of Plastic Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX
Further Information

Publication History

Publication Date:
16 June 2003 (online)

ABSTRACT

Enormous advances in the development of skin substitutes have occurred over the past 3 decades. There are numerous commercially available skin substitutes, some of which can provide permanent dermis or epidermis. Unfortunately, no product available can permanently replace both dermis and epidermis in a single-stage application procedure. Several investigators have reported promising strategies for permanent skin replacement using a wide variety of components and culturing techniques. Obstacles to overcome in the quest for an ideal skin substitute include epidermal antigenicity, scarring, contraction, pigmentation, and loss of adnexal structures. The development, indications, and shortcomings of several currently used skin substitutes and promising experimental strategies are reviewed. The future direction of tissue-engineered skin substitutes is addressed with a focus on overcoming the current obstacles.

REFERENCES

  • 1 Asmursen P. The Skin. Einfurung and Grundlage: Rohstoffe, Klebetchnologie, vol 1. Compendium Medical; 1986
  • 2 Mast B A. The skin. In: Cohen IK, Diegelmann RF, Lindbald WJ, eds. Wound Healing: Biochemical and Clinical Aspects Philadelphia, PA: WB Saunders 1992: 344-355
  • 3 Boyce S. Design principles for composition and performance of cultured skin substitutes.  Burns . 2001;  27 523-533
  • 4 Bello Y, Falabella A. Use of skin substitutes in dermatology.  Dermatol Clin . 2001;  19 555-560
  • 5 Muller M J, Nicolai O, Wiggins R. In: Herndon D, ed. Total Burn Care. London: WB Saunders 1996: 1827-1829
  • 6 Schulz J, Tompkins R. Artificial skin.  Annu Rev Med . 2000;  51 231-244
  • 7 Greenfield E, Jordan B. Advances in burn wound care.  Crit Care Nurs Clin North Am . 1996;  8 203-215
  • 8 Sheridan R, Tompkins R. Skin substitutes in burns.  Burns . 1999;  25 97-103
  • 9 Eaglstein W, Falanga V. Tissue engineering and the development of Apligraf(r), a human skin equivalent.  Adv Wound Care . 1998;  11(4 suppl) 1-8
  • 10 Balasubramani M, Kumar T. Skin substitutes: a review.  Burns . 2001;  27 534-544
  • 11 Bello Y, Falabella A. Tissue-engineered skin: current status in wound healing.  Am J Clin Dermatol . 2001;  2 305-313
  • 12 Pomahac;ak B, Svenjö T. Tissue engineering of skin.  Crit Rev Oral Biol Med . 1998;  9 333-344
  • 13 Phillips T. New skin for old: developments in biological skin substitutes.  Arch Dermatol . 1998;  134 344-349
  • 14 Arons J, Wainwright D, Jordon R. The surgical applications and implications of cultured human epidermis: a comprehensive review.  Surgery . 1992;  111 4-11
  • 15 Rheinwald J, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells.  Cell . 1975;  6 331-344
  • 16 Rheinwald J, Green H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma.  Cell . 1975;  6 317-330
  • 17 Green H, Kehinde O. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting.  Proc Natl Acad Sci USA . 1979;  76 5665-5668
  • 18 Woodley D. Covering wounds with cultured keratinocytes.  JAMA . 1989;  262 2140-2141
  • 19 O'Connor N, Mulliken J. Grafting of burns with cultured epithelium from autologous epidermal cells.  Lancet . 1981;  1 75-78
  • 20 Gallico G, O'Connor N. Permanent coverage of large burn wounds with autologous cultured human epithelium.  N Engl J Med . 1984;  311 448-451
  • 21 Woodley D, Peterson H. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils.  JAMA . 1988;  259 2566-2571
  • 22 Hafemann B, Ensslen S, Erdmann C. Use of collagen/ elastin membrane for the tissue engineering dermis.  Burns . 1999;  25 373-384
  • 23 Bergstresser H, Baxter C. Composite skin grafts: frozen dermal allografts support the engraftment and expansion of autologous epidermis.  J Trauma . 1985;  25 106-112
  • 24 Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacements after burn injury.  Lancet . 1986;  1 1123-1124
  • 25 Compton C, Hickerson W, Nadire K. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis.  J Burn Care Rehab . 1993;  14 653-662
  • 26 Kraut J, Eckhardt A, Patton M. Combined simultaneous application of cultured epithelial autografts and Alloderm(r).  Wounds . 1995;  7 137-142
  • 27 Orgill D, Butler C, Regan J. A vascularized collagen-gag matrix provides a dermal substrate and improves take of cultured epithelial autografts.  Plast Reconstr Surg . 1998;  102 423-429
  • 28 Hundyadi J, Farkas B, Bertenyi C. Keratinocyte grafting: new means of transplantation for full-thickness wounds.  J Dermatol Surg Oncol . 1988;  14 75
  • 29 Kaiser H, Stark G, Kopp J. Cultured autologous keratinocytes in fibrin glue suspension, exclusively and combined with STS-allograft (preliminary clinical and histological report of a new technique).  Burns . 1994;  20 23
  • 30 Hafemann B, Hettich R, Ensslen S. Treatment of skin defects using suspensions of in vitro cultured keratinocytes.  Burns . 1994;  20 68
  • 31 Horch R, Bannasch H, Kopp J. Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis.  Cell Transplant . 1995;  7 309
  • 32 Alsbjörn B. Biologic wound coverings in burn treatment.  World J Surg . 1992;  16 43-46
  • 33 Hefton J, Ambershon J, Bizes D. Loss of HLA DR expression by human epidermal cells after growth in culture.  J Invest Dermatol . 1984;  83 48-50
  • 34 Thiovlet J, Faure M, Demidem A. Long term survival and immunological tolerance of human epidermal allografts produced in culture.  Transplantation . 1986;  42 274-280
  • 35 Aubock J, Irschick E, Romani N. Rejection, after a slightly prolonged survival time, of Langerhans cell-free allogeneic cultured epidermis used for wound coverage in humans.  Transplantation . 1988;  45 730-737
  • 36 Brain A, Purkis P, Coates P. Survival of cultured allogeneic keratinocytes transplanted to a deep dermal bed assessed with a probe specific for Y chromosome.  Br Med J . 1989;  298 917-919
  • 37 Burt A, Pallet C, Sloane J. Survival of cultured allografts in patients with burns assessed with a probe specific for Y chromosome.  Br Med J . 1989;  298 915-917
  • 38 Phillips T. Biologic skin substitutes.  J Dermatol Surg Oncol . 1992;  19 794-800
  • 39 Bolivar-Flores J, Poumian E, Marsch-Moreno M. Use of cultured human epidermal keratinocytes for allografting burns and conditions for temporary banking of the cultured allografts.  Burns . 1990;  16 3-8
  • 40 Larochelle F, Ross G, Rouabhia M. Permanent skin replacement using engineered epidermis containing fewer than 5% syngeneic keratinocytes.  Lab Invest . 1998;  78 1089-1099
  • 41 Burke J, Yannas I, Quinby W. Successful use of physiologically acceptable artificial skin in the treatment of extensive burn injury.  Ann Surg . 1981;  194 413-428
  • 42 Yannas I, Burke J. Design of an artificial skin. I. Design principles.  J Biomed Mater Res . 1980;  14 65-68
  • 43 Yannas I, Burke J, Gordon P. Design of an artificial skin. III. Control of chemical composition.  J Biomed Mater Res . 1980;  14 107-113
  • 44 Orgill D, Butler C, Regan J. Behavior of collagen-GAG matrices as dermal replacement in rodent and porcine models.  Wounds . 1996;  8 151-157
  • 45 Wainwright D. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns.  Burns . 1995;  21 243-248
  • 46 Wainwright D, Madden M, Luterman A. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns.  J Burn Care Rehab . 1996;  17 124-136
  • 47 Munster A, Smith-Meek M, Shalom A. Acellular allograft dermal matrix: immediate or delayed epidermal coverage?.  Burns . 2000;  27 150-153
  • 48 Cooper M, Hansbrough J, Spielvogel R. In vivo optimization of a living dermal substitute employing cultured human fibroblasts on a biodegradable polyglycolic acid or polyglactin mesh.  Biomaterials . 1991;  12 243-248
  • 49 Hansbrough J, Cooper M, Cohen R. Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice.  Surgery . 1992;  111 438-445
  • 50 Hansbrough J, Dore C, Hansbrough W. Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds.  J Burn Care Rehab . 1992;  13 519-529
  • 51 Gentzkow G, Iwasaki S, Hershon K. Use of Dermagraft, a cultured human dermis, to treat diabetic foot ulcers.  Diabetes Care . 1996;  19 350-354
  • 52 Bell E, Ehrlich P, Buttle D. Living tissue formed in vitro and accepted as skin-equivalent of full-thickness.  Science . 1981;  221 1052-1054
  • 53 Kearney J. Clinical evaluation of skin substitutes.  Burns . 2001;  27 545-551
  • 54 Wilkins L, Watson S, Prosky S. Development of a bi-layered living skin construct for clinical applications.  Biotechnol Bioeng . 1994;  43 747-756
  • 55 Falanga V, Margolis D, Alvarez O. Healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent.  Arch Dermatol . 1998;  134 293-300
  • 56 Trent J, Kirsner R. Tissue engineered skin: Apligraf, a bi-layered living skin equivalent.  Int J Clin Pract . 1998;  52 408-413
  • 57 Eaglstein W, Iriondo M, Laszlo K. A composite skin substitute (Graftskin) for surgical wounds.  Dermatol Surg . 1995;  21 839-843
  • 58 Muhart M, McFalls S, Kersner R. Bioengineered skin.  Lancet . 1997;  350 1142
  • 59 Falabella A, Valencia I, Eaglstein W. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds.  Arch Dermatol . 2000;  136 1225-1230
  • 60 Kirsner R. The use of Apligraf(r) in acute wounds.  J Dermatol . 1998;  25 805-811
  • 61 Boyce S, Kagan R, Meyer N. Cultured skin substitutes combined with Integra to replace native skin autograft and allograft for closure of full-thickness burns (abstract).  J Burn Care Rehab . 1999;  20 S196
  • 62 Lam P, Chan E, To E. Development and evaluation of a new composite Laserskin graft.  J Trauma . 1999;  47 918
  • 63 Butler C. Autologous keratinocyte derived skin substitutes. Paper presented at the Plastic Surgery Research Council Meeting, April 20, 2002, Boston, MA
  • 64 Butler C. Strategies of artificial skin development. Artificial skin and tissue engineering symposium. Paper presented at the annual meeting of the American Society of Plastic Surgeons, November 7, 2001, Orlando, FL
  • 65 Butler C, Orgill D, Compton C. The effect of keratinocyte seeding of collagen-glycosaminoglycan membranes on the regeneration of skin in a porcine model.  Plast Reconstr Surg . 1998;  101 1572-1579
  • 66 Butler C, Orgill D, Compton C. Effects of cell culturing on keratinocyte-seeded collagen-glycosaminoglycan matrix skin replacement in full-thickness porcine wounds.  Surg Forum . 1996;  47 752-754
  • 67 Butler C, Orgill D, Correia C. Comparison of cultured and uncultured keratinocytes used for cell seeded collagen-GAG matrix skin replacements.  Br J Plast Surg . 1999;  52 127-132
  • 68 Compton C, Butler C, Yannas I. Organized skin structure is regenerated in vivo from collagen-GAG matrices seeded with autologous keratinocytes.  J Invest Dermatol . 1998;  110 908-916
  • 69 Butler C, Navarro F, Park C. Regeneration of neomucosa using cell-seeded collagen-GAG matrices in athymic mice.  Ann Plast Surg . 2002;  48 298-304
  • 70 Butler C, Orgill D. Autologous keratinocytes combined with a collagen-GAG matrix. In: Horch RE, ed.Cultured Human Keratinocytes and Tissue Engineered Skin Substitutes New York: Thieme Medical Publishers; 2001: 243-250
  • 71 Jones P, Watt F. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in Integrin(r) function and expression.  Cell . 1993;  73 713-724
  • 72 Berthod F, Damour O. In vitro reconstructed skin models for wound coverage in deep burns.  Br J Dermatol . 1997;  136 809-816
  • 73 Mulligan R. The basic science of gene therapy.  Science . 1993;  260 926
  • 74 Andree C, Voigt M, Wenger A. Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system.  Tissue Eng . 2001;  7 757-766
  • 75 Supp D, Supp A, Bell S. Enhanced vascularization of cultured skin substitutes genetically modified to overexpression vascular endothelial growth factor.  J Invest Dermatol . 2000;  114 5-13
  • 76 Dellambra E, Vailly J, Pellegrini G. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa.  Hum Gene Ther . 1998;  9 1359-1370
  • 77 De Luca M, Franzi A, D'Anna F. Coculture of human keratinocytes and melanocytes: differentiated melanocytes are physiologically organized in the basal layer of the cultured epithelium.  Eur J Cell Biol . 1988;  46 176-180
  • 78 De Luca M, D'Anna F, Bondanza S. Human epithelial cells induce human melanocyte growth in vitro but only skin keratinocytes regulate its proper differentiation in the absence of dermis.  J Cell Biol . 1988;  107 1919-1926
  • 79 De Luca M, Bondanza S, DiMarco E. et al .Keratinocyte-melanocyte interactions in in vitro reconstituted normal human epidermis. In: Leigh I. Lane, B. Watt, F. eds. The Keratinocyte Handbook Cambridge UK: Cambridge University Press 1994: 95-108
  • 80 Nakazawa K, Sahuc F, Collombel C. et al . Pigmented human skin equivalent as a model of the mechanisms of control of cell-cell cell-matrix interactions.  Med Biol Eng Comput . 1998;  36 813-820
  • 81 Guerra L, Capurro S, Melchi M. et al . Treatment of "stable" vitiligo by Timed surgery transplantation of cultured epidermal autografts.  Arch Dermatol . 2000;  136 1380-1389