Synlett 2003(6): 0837-0840
DOI: 10.1055/s-2003-38741
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

First Catalytic, Enantioselective Aldol-Tishchenko Reactions with Ketone Aldols as Enol Equivalents

Christoph Schneider*, Markus Hansch
Institut für Organische Chemie der Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
Fax: +49(551)399660; e-Mail: cschnei1@gwdg.de;
Further Information

Publication History

Received 19 February 2003
Publication Date:
17 April 2003 (online)

Abstract

Chiral zirconiumTADDOLates were found to catalyze the aldol-Tishchenko reaction of diacetone alcohol (1a) and two other ketone aldol adducts 1b and 1c with a range of aldehydes giving rise to differentiated 1,3-anti-diol monoesters in good yields, complete diastereocontrol and moderate enantioselectivities.

    References

  • 1 For an excellent compilation of catalytic, enantioselective processes see: Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999. 
  • For reviews see:
  • 2a Palomo C. Oiarbide M. Garcia JM. Chem.-Eur. J.  2002,  8:  37 
  • 2b Denmark SE. Stavenger RA. Acc. Chem. Res.  2000,  33:  432 
  • 2c Johnson JS. Evans DA. Acc. Chem. Res.  2000,  33:  325 
  • 2d Carreira EM. Comprehensive Asymmetric Catalysis   Vol. 3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999.  p.998 
  • 2e Gröger H. Vogel EM. Shibasaki M. Chem.-Eur. J.  1998,  4:  1137 
  • 2f Nelson SG. Tetrahedron: Asymmetry  1998,  9:  357 
  • 3a Yoshikawa N. Yamada YMA. Das J. Sasai H. Shibasaki M. J. Am. Chem. Soc.  1999,  121:  4168 
  • 3b Yamada YMA. Shibasaki M. Tetrahedron Lett.  1998,  39:  5561 
  • 4a List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • 4b Review: List B. Synlett  2001,  1675 
  • 5 Trost BM. Ito H. J. Am. Chem. Soc.  2000,  122:  12003 
  • 6 Juhl K. Gathergood N. Jorgensen KA. Chem. Commun.  2000,  2211 
  • 7 Nothrup AB. McMillan DWC. J. Am. Chem. Soc.  2002,  124:  6798 
  • 8 Nelson SG. Peelen TJ. Wan Z. J. Am. Chem. Soc.  1999,  121:  9742 
  • 9a Taylor SJ. Duffey MO. Morken JP. J. Am. Chem. Soc.  2000,  122:  4528 
  • 9b Zhao C.-X. Duffey MO. Taylor SP. Morken JP. Org. Lett.  2001,  3:  1829 
  • 10 Yoshida K. Ogasawara M. Hayashi T. J. Am. Chem. Soc.  2002,  124:  10984 
  • A slightly different approach was pursued by Feringa, Alexakis, and Krische who investigated catalytic, enantioselective conjugate additions to enones followed by a diastereoselective aldol reaction, see:
  • 11a Feringa BL. Pineschi M. Arnold LA. Imbos R. de Vries AHM. Angew. Chem., Int. Ed. Engl.  1997,  36:  2620 ; Angew. Chem. 1997, 109, 2733
  • 11b Alexakis A. Trevitt GP. Bernardinelli G. J. Am. Chem. Soc.  2001,  123:  4358 
  • 11c Cauble DF. Gipson JD. Krische MJ. J. Am. Chem. Soc.  2003,  125:  1110 
  • 12 Mascarenhas CM. Miller SP. White PS. Morken JP. Angew. Chem. Int. Ed.  2001,  40:  601 ; Angew. Chem. 2001, 113, 621
  • 13 Schneider C. Hansch M. Chem. Commun.  2001,  1218 
  • 14a Simpura I. Nevalainen V. Angew. Chem. Int. Ed.  2000,  39:  3422 ; Angew. Chem. 2000, 112, 3564
  • 14b Nevalainen V. Simpura I. Tetrahedron Lett.  2001,  42:  3905 
  • 15 Evans et al. have established metal-catalyzed, highly anti-diastereoselective Tishchenko reductions of β-hydroxy ketones, see: Evans DA. Hoveyda AH. J. Am. Chem. Soc.  1990,  112:  6447 
  • 16 For a comprehensive review about synthesis and various applications of tartaric acid-derived TADDOLs as chiral ligands and auxiliaries see: Seebach D. Beck AK. Heckel A. Angew. Chem. Int. Ed.  2001,  40:  92 ; Angew. Chem. 2001, 113, 97 and ref. cited therein
  • 18a The diols derived from the aldol-Tishchenko products 3a, 3b, and 10b were independently synthesized through anti-diastereoselective (Me4N)BH(OAc)3-reduction of the corresponding aldol products which were obtained according to the following references: List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • 18b In addition see: Trost BM. Silcoff ER. Ito H. Org. Lett.  2001,  3:  2497 
  • 18c Also see: Ramachandran PV. Xu W. Brown HC. Tetrahedron Lett.  1996,  37:  4911 
  • 18d The absolute configuration of the diol derived from 9b was assigned based upon the known rotation value, see: Marinetti A. Genet J.-P. Jus S. Blanc D. Ratovelomanana-Vidal V. Chem.-Eur. J.  1999,  5:  1160 
  • 18e

    The absolute configuration of all other products was assigned in analogy to these experiments

  • 21 For an excellent review about nonlinear effects see: Girard C. Kagan HB. Angew. Chem. Int. Ed.  1998,  37:  2922 ; Angew. Chem. 1998, 110, 3089
17

All new products were fully characterized by 1H and 13C NMR, IR, MS and elemental analysis. Representative spectroscopic data: 3a: [α]D 20 = +8.9° (c = 1.0, CHCl3, 47% ee); IR (film): 3452, 2969, 2936, 2878, 1731, 1272, 1202, 1163, 1072 cm-1; 1H (200 MHz, CDCl3): δ = 0.94 (d, J = 7.0 Hz, 6 H, i-Pr), 1.19 (d, J = 7.0 Hz, 3 H, CH3) 1.22 (d, J = 7.0 Hz, 6 H, i-Pr), 1.56 (m, 2 H, CH2), 1.81 [m, 1 H, CH(CH3)2], 2.61 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 3.02 (br s, 1 H, OH), 3.58 (m, 1 H, CHOH), 4.88 (m, 1 H, CHOCOR); 13C (50 MHz, CDCl3): δ = 17.61, 18.87, 19.14, 19.23, 22.91, 32.16, 34.39, 41.61, 63.25, 75.49, 178.6; MS (200 eV, DCI/NH3): m/z = 422(1) [2M + NH4 +], 237(3) [M + NH3 + NH4 +], 220(100) [M + NH4 +], 202(8) [M + H+]; Calculated for C11H22O3 (202.29): C 65.31, H 10.96; Found C 65.22, H 11.02; 10b: [α]D 20 = +11.5 (c = 0.85, CHCl3, 57% ee); IR (film): 3518, 2967, 2876, 1714, 1389, 1267, 1204, 1163, 1070, 1011 cm-1; 1H (200 MHz, CDCl3): δ = 0.89 (s, 9 H, t-Bu), 0.93 (d, J = 7.0 Hz, 6 H, i-Pr), 1.20 (d, J = 7.0 Hz, 6 H, i-Pr), 1.28-1.72 (m, 2 H, CH2), 1.75-1.95 [m, 1 H, CH(CH3)2], 2.50 (br s, 1 H, OH), 2.61 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 3.00 (dd, J = 10.5, 2.0 Hz, 1 H, CHOH), 4.95 (ddd, J = 10.5 Hz, 5.0 Hz, 2.0 Hz, 1 H, CHOCOR); 13C (50 MHz, CDCl3): δ = 17.63, 18.97, 19.20, 19.26, 25.94, 32.37, 33.96, 34.41, 34.42, 74.73, 75.81, 178.4; MS (200 eV, DCI/NH3): m/z = 279 (1) [M + NH3 + NH4 +], 262 (100) [M + NH4 +]. Calculated for C14H28O3 (244.37): C 68.81, H 11.55; Found: C 69.08, 11.29.

19

The following Zr-BINOLate complexes were tested in the reaction of 1a and 2a under otherwise identical reaction conditions: Zr(t-BuO)4/(R)-BINOL: 31% yield (28% ee); Zr(t-BuO)4/(R)-6,6′-Br2-BINOL: 35% yield (25% ee); Zr(t-BuO)4/(R)-3,3′-Br2-BINOL: 62% yield (0% ee); Zr(t-BuO)4/(R)-3,3′-Ph2-BINOL: 89% yield (28% ee).

20

Prepared by the l-proline-catalyzed aldol addition of acetone and isobutyraldehyde according to ref. [4]