Subscribe to RSS
DOI: 10.1055/s-2003-38741
First Catalytic, Enantioselective Aldol-Tishchenko Reactions with Ketone Aldols as Enol Equivalents
Publication History
Publication Date:
17 April 2003 (online)
Abstract
Chiral zirconiumTADDOLates were found to catalyze the aldol-Tishchenko reaction of diacetone alcohol (1a) and two other ketone aldol adducts 1b and 1c with a range of aldehydes giving rise to differentiated 1,3-anti-diol monoesters in good yields, complete diastereocontrol and moderate enantioselectivities.
Key words
aldol reaction - asymmetric catalysis - ketone aldols - Tishchenko reduction - zirconium
- 1 For an excellent compilation
of catalytic, enantioselective processes see: Comprehensive
Asymmetric Catalysis
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. - For reviews see:
-
2a
Palomo C.Oiarbide M.Garcia JM. Chem.-Eur. J. 2002, 8: 37 -
2b
Denmark SE.Stavenger RA. Acc. Chem. Res. 2000, 33: 432 -
2c
Johnson JS.Evans DA. Acc. Chem. Res. 2000, 33: 325 -
2d
Carreira EM. Comprehensive Asymmetric Catalysis Vol. 3:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. p.998 -
2e
Gröger H.Vogel EM.Shibasaki M. Chem.-Eur. J. 1998, 4: 1137 -
2f
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 -
3a
Yoshikawa N.Yamada YMA.Das J.Sasai H.Shibasaki M. J. Am. Chem. Soc. 1999, 121: 4168 -
3b
Yamada YMA.Shibasaki M. Tetrahedron Lett. 1998, 39: 5561 -
4a
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 -
4b Review:
List B. Synlett 2001, 1675 - 5
Trost BM.Ito H. J. Am. Chem. Soc. 2000, 122: 12003 - 6
Juhl K.Gathergood N.Jorgensen KA. Chem. Commun. 2000, 2211 - 7
Nothrup AB.McMillan DWC. J. Am. Chem. Soc. 2002, 124: 6798 - 8
Nelson SG.Peelen TJ.Wan Z. J. Am. Chem. Soc. 1999, 121: 9742 -
9a
Taylor SJ.Duffey MO.Morken JP. J. Am. Chem. Soc. 2000, 122: 4528 -
9b
Zhao C.-X.Duffey MO.Taylor SP.Morken JP. Org. Lett. 2001, 3: 1829 - 10
Yoshida K.Ogasawara M.Hayashi T. J. Am. Chem. Soc. 2002, 124: 10984 - A slightly different approach was pursued by Feringa, Alexakis, and Krische who investigated catalytic, enantioselective conjugate additions to enones followed by a diastereoselective aldol reaction, see:
-
11a
Feringa BL.Pineschi M.Arnold LA.Imbos R.de Vries AHM. Angew. Chem., Int. Ed. Engl. 1997, 36: 2620 ; Angew. Chem. 1997, 109, 2733 -
11b
Alexakis A.Trevitt GP.Bernardinelli G. J. Am. Chem. Soc. 2001, 123: 4358 -
11c
Cauble DF.Gipson JD.Krische MJ. J. Am. Chem. Soc. 2003, 125: 1110 - 12
Mascarenhas CM.Miller SP.White PS.Morken JP. Angew. Chem. Int. Ed. 2001, 40: 601 ; Angew. Chem. 2001, 113, 621 - 13
Schneider C.Hansch M. Chem. Commun. 2001, 1218 -
14a
Simpura I.Nevalainen V. Angew. Chem. Int. Ed. 2000, 39: 3422 ; Angew. Chem. 2000, 112, 3564 -
14b
Nevalainen V.Simpura I. Tetrahedron Lett. 2001, 42: 3905 - 15 Evans et al. have established
metal-catalyzed, highly anti-diastereoselective
Tishchenko reductions of β-hydroxy ketones, see:
Evans DA.Hoveyda AH. J. Am. Chem. Soc. 1990, 112: 6447 - 16 For a comprehensive review about
synthesis and various applications of tartaric acid-derived TADDOLs
as chiral ligands and auxiliaries see:
Seebach D.Beck AK.Heckel A. Angew. Chem. Int. Ed. 2001, 40: 92 ; Angew. Chem. 2001, 113, 97 and ref. cited therein -
18a The
diols derived from the aldol-Tishchenko products 3a, 3b, and 10b were
independently synthesized through anti-diastereoselective
(Me4N)BH(OAc)3-reduction of the corresponding
aldol products which were obtained according to the following references:
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 -
18b In addition see:
Trost BM.Silcoff ER.Ito H. Org. Lett. 2001, 3: 2497 -
18c Also see:
Ramachandran PV.Xu W.Brown HC. Tetrahedron Lett. 1996, 37: 4911 -
18d The absolute configuration
of the diol derived from 9b was assigned
based upon the known rotation value, see:
Marinetti A.Genet J.-P.Jus S.Blanc D.Ratovelomanana-Vidal V. Chem.-Eur. J. 1999, 5: 1160 -
18e
The absolute configuration of all other products was assigned in analogy to these experiments
- 21 For an excellent review about
nonlinear effects see:
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2922 ; Angew. Chem. 1998, 110, 3089
References
All new products were fully characterized by 1H and 13C NMR, IR, MS and elemental analysis. Representative spectroscopic data: 3a: [α]D 20 = +8.9° (c = 1.0, CHCl3, 47% ee); IR (film): 3452, 2969, 2936, 2878, 1731, 1272, 1202, 1163, 1072 cm-1; 1H (200 MHz, CDCl3): δ = 0.94 (d, J = 7.0 Hz, 6 H, i-Pr), 1.19 (d, J = 7.0 Hz, 3 H, CH3) 1.22 (d, J = 7.0 Hz, 6 H, i-Pr), 1.56 (m, 2 H, CH2), 1.81 [m, 1 H, CH(CH3)2], 2.61 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 3.02 (br s, 1 H, OH), 3.58 (m, 1 H, CHOH), 4.88 (m, 1 H, CHOCOR); 13C (50 MHz, CDCl3): δ = 17.61, 18.87, 19.14, 19.23, 22.91, 32.16, 34.39, 41.61, 63.25, 75.49, 178.6; MS (200 eV, DCI/NH3): m/z = 422(1) [2M + NH4 +], 237(3) [M + NH3 + NH4 +], 220(100) [M + NH4 +], 202(8) [M + H+]; Calculated for C11H22O3 (202.29): C 65.31, H 10.96; Found C 65.22, H 11.02; 10b: [α]D 20 = +11.5 (c = 0.85, CHCl3, 57% ee); IR (film): 3518, 2967, 2876, 1714, 1389, 1267, 1204, 1163, 1070, 1011 cm-1; 1H (200 MHz, CDCl3): δ = 0.89 (s, 9 H, t-Bu), 0.93 (d, J = 7.0 Hz, 6 H, i-Pr), 1.20 (d, J = 7.0 Hz, 6 H, i-Pr), 1.28-1.72 (m, 2 H, CH2), 1.75-1.95 [m, 1 H, CH(CH3)2], 2.50 (br s, 1 H, OH), 2.61 [sept, J = 7.0 Hz, 1 H, CH(CH3)2], 3.00 (dd, J = 10.5, 2.0 Hz, 1 H, CHOH), 4.95 (ddd, J = 10.5 Hz, 5.0 Hz, 2.0 Hz, 1 H, CHOCOR); 13C (50 MHz, CDCl3): δ = 17.63, 18.97, 19.20, 19.26, 25.94, 32.37, 33.96, 34.41, 34.42, 74.73, 75.81, 178.4; MS (200 eV, DCI/NH3): m/z = 279 (1) [M + NH3 + NH4 +], 262 (100) [M + NH4 +]. Calculated for C14H28O3 (244.37): C 68.81, H 11.55; Found: C 69.08, 11.29.
19The following Zr-BINOLate complexes were tested in the reaction of 1a and 2a under otherwise identical reaction conditions: Zr(t-BuO)4/(R)-BINOL: 31% yield (28% ee); Zr(t-BuO)4/(R)-6,6′-Br2-BINOL: 35% yield (25% ee); Zr(t-BuO)4/(R)-3,3′-Br2-BINOL: 62% yield (0% ee); Zr(t-BuO)4/(R)-3,3′-Ph2-BINOL: 89% yield (28% ee).
20Prepared by the l-proline-catalyzed aldol addition of acetone and isobutyraldehyde according to ref. [4]