Subscribe to RSS
DOI: 10.1055/s-2003-36800
Electron Deficient Dienes 3:
[1]
Rapid Access to 2-Hydroxybenzophenones
via
Inverse Electron Demand Diels-Alder-Driven Domino Reactions
of a
Chromone-Fused Electron Deficient Diene with Enamines
Publication History
Publication Date:
22 January 2003 (online)
Abstract
Horner-Wadsworth-Emmons reaction of 3-formylchromone affords an electron deficient 1,3-diene that undergoes domino inverse electron demand Diels-Alder/elimination/intramolecular elimination reactions with enamines to afford functionalized 2-hydroxybenzophenones.
Key words
domino reactions - inverse electron demand Diels-Alder - chromones - enamines - benzophenones
- 1 Part 2 in this series:
Bodwell GJ.Pi Z.Pottie IR. Synlett 1999, 477 -
2a
Boger DL. J. Heterocyclic Chem. 1996, 33: 1519 -
2b
Van der Plas HC. Farmaco 1995, 50: 419 -
2c
Afarinkia K.Vinader V.Nelson TD.Posner GH. Tetrahedron 1992, 48: 9111 -
2d
Boger DL. Bull. Soc. Chim. Belg. 1990, 99: 599 -
2e
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis Academic Press; New York: 1989. -
2f
Boger DL. Chem. Rev. 1986, 86: 781 -
2g
Boger DL. Tetrahedron 1983, 39: 2869 - For some recent examples see:
-
3a
Bodwell GJ.Li J. Angew. Chem. Int. Ed. 2002, 41: 3261 -
3b
Posner GH.Woodard BT.Crawford KR.Peleg S.Brown AJ.Dolan P.Kensler TW. Bioorg. Med. Chem. Lett. 2002, 10: 2353 -
3c
Nomak R.Snyder JK. Tetrahedron Lett. 2001, 42: 7929 -
3d
Boger DL.Hong J. J. Am. Chem. Soc. 2001, 123: 8515 -
3e
Wan ZK.Woo GHC.Snyder JK. Tetrahedron 2001, 57: 5497 -
3f
Boger DL.Wolkenberg SE. J. Org. Chem. 2000, 65: 9120 -
3g
Boger DL.Hong J.Hikota M.Ishida M. J. Am. Chem. Soc. 1999, 121: 2471 -
4a
Fringuelli F.Tattichi A. Dienes in the Diels-Alder Reaction John Wiley and Sons; New York: 1990. -
4b
Corey EJ. Angew. Chem. Int. Ed. 2002, 41: 1650 -
4c
Nicolaou KC.Snyder SA.Montagnon T.Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002, 41: 1668 - 5
Bodwell GJ.Pi Z. Tetrahedron Lett. 1997, 38: 309 - 6 For a review of 3-formylchromone
see:
Sabitha G. Aldrichimica Acta 1996, 29: 15 - 7 This diene was prepared previously
from 3-formylchromone by a different method, but no report of its
Diels-Alder chemistry has appeared. See:
Iwasaki H.Kume T.Yamamoto Y.Akiba K. Heterocycles 1988, 27: 1599 - 11
Hess BA.Baldwin JE. J. Org. Chem. 2002, 67: 6025 -
12a
Kokubo K.Kakimoto H.Oshima T. J. Am. Chem. Soc. 2002, 124: 6548 -
12b
Peters KS.Cashin A.Timbers P. J. Am. Chem. Soc. 2000, 122: 107 -
12c
Organic Photochemistry
Chapman OL. Marcel Dekker; New York: 1969. -
12d
Advances
in Photochemistry
Vol. 8:
Pitts JN.Hammond GS.Noyes WA. John Wiley and Sons; New York: 1971. -
13a
Wiensner J.Kettler K.Jomaa H.Schlitzer M. Bioorg. Med. Chem. Lett. 2002, 12: 543 -
13b
Lopez A.Hudson JB.Towers GHN. J. Ethnopharmacology 2001, 77: 189 -
13c
Peres V.Nagem TJ. Phytochemistry 1997, 44: 191 -
13d
Bennett GJ.Lee H.-H. Phytochemistry 1989, 28: 967 -
13e
Gapinski DM.Mallett BE.Froelich LL.Jackson WT. J. Med. Chem. 1990, 33: 2798 -
13f
Gapinski DM.Mallett BE.Froelich LL.Jackson WT. J. Med. Chem. 1990, 33: 2808 -
14a
Dormán G.Prestwich GD. Biochemistry 1994, 33: 5661 -
14b
Chin JW.Martin AB.King DS.Wang L.Schultz PG. Proc. Nat. Acad. Sci. U.S.A. 2002, 99: 11020 -
15a
Kao C.-L.Chern J.-W. J. Org. Chem. 2002, 67: 6772 -
15b
Colvin EW.Hamill BJ. J. Chem. Soc., Perkin Trans. 1 1977, 1379 -
16a
Huang Y.-L.Chen C.-C.Chen Y.-J.Huang R.-L.Shieh B.-J. J. Nat. Prod. 2001, 64: 903 -
16b
Laursen B.Denieul M.-P.Skrydstrup T. Tetrahedron 2002, 58: 2231 -
16c
Fuller RW.Westergaard CK.Collins JW.Cardellina JHII.Boyd MR. J. Nat. Prod. 1999, 62: 67 -
16d
Cuesta-Rubio O.Padron A.Castro HV.Pizza C.Rastrelli L. J. Nat. Prod. 2001, 64: 973 -
16e
Hou A.-J.Fukai T.Shimazaki M.Sakagami H.Sun H.-D.Nomura T. J. Nat. Prod. 2001, 64: 65 - 17
Mostafa SI.El-Asmy AA.El-Shahawi MS. Transit. Metal Chem. 2000, 25: 470 - 18
Zakrzewski J.Szymonowski J. Polym. Degrad. Stabil. 2000, 67: 279 - 19
Denes AR.Young RA. Holzforschung 1999, 53: 632 -
20a
Okazaki T.Hirota N.Terazima M. J. Chem. Phys. 1999, 110: 11399 -
20b
Bhasikuttan AC.Singh AK.Palit DK.Sapre AV.Mittal JP. J. Phys. Chem. A 1998, 102: 3470 - 21
Taber DF.Sethuraman MR. J. Org. Chem. 2000, 65: 254 -
22a
Chaube VD.Moreau P.Finiels A.Ramaswamy AV.Singh AP. Catalysis Lett. 2002, 79: 89 -
22b
Martin R. Org. Prep. Proced. Int. 1992, 24: 369 -
23a
Storm JP.Andersson C.-M. J. Org. Chem. 2000, 65: 5264 -
23b
Echavarran AM.Stille JK. J. Am. Chem. Soc. 1988, 110: 1557 -
23c
Ishiyama T.Kizaki H.Miyaura N.Suzuki A. Tetrahedron Lett. 1993, 34: 7595
References
( E )-3-(4-Oxo-4 H -chromen-3-yl)acrylic acid ethyl ester(7): To a stirred room temperature suspension of NaH [2.07 g (60% dispersion in mineral oil), 51.7 mmol] in anhydrous THF (50 mL) under N2 was added dropwise triethylphosphonoacetate (12.4 g, 55.1 mmol) to give a clear colorless solution. The resulting solution was then added dropwise to a stirred solution of 3-formylchromone 6 (6.00 g, 34.5 mol) in dry THF (200 mL). The resulting orange solution was stirred at room temperature for 48 h. The solvent was removed under reduced pressure. The resulting orange solid was dissolved in CH2Cl2 (50 mL) and washed with saturated aqueous NaHSO3 solution (4 × 20 mL), dried over MgSO4 and filtered. The solvent was removed under reduced pressure and the residue was subjected to column chromatography (silica gel, 2% EtOAc/CH2Cl2) to afford 7 (6.64 g, 79%) as a yellow solid. Mp = 96-98 °C (Lit. [7] mp not reported); 1H NMR (500 MHz, CDCl3) δ = 8.29 (dd, J = 8.2 Hz, 1.7 Hz, 1 H), 8.12 (s, 1 H), 7.74-7.68 (m, 1 H), 7.49-7.43 (m, 2 H), 7.40 (d, J = 15.8 Hz, 1 H), 7.32 (d, J = 15.8 Hz, 1 H), 4.26 (q, J = 7.1 Hz, 2 H), 1.33 (t, J = 7.0 Hz, 3 H).
9A stepwise mechanism, i.e. Michael addition followed by an intramolecular Mannich reaction cannot be ruled out. We will comment further on this topic in forthcoming publications.
10General procedure for the reaction of diene 7 with enamines: A solution of diene 7 (0.500 g, 2.05 mmol) and the enamine (1.5 equivalents) in CH2Cl2 (12.5 mL) was stirred at room temperature under N2 until the starting material had been consumed or no further reaction was evident (according to TLC analysis). The mixture was washed with 1 M aqueous HCl solution (4 × 10 mL). The organic layer was dried over MgSO4, filtered and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel. The products obtained from chromatography did not require further purification for analysis. All new compounds were characterized by melting point, 1H NMR, 13C NMR, EIMS and HRMS and/or elemental analysis. For example: 6-(2-Hydroxybenzoyl)indan-4-carboxylic acid ethyl ester(13a): Diene 7 and 1-(cyclopent-1-enyl)pyrrolidine 12a (0.422 g, 3.07 mmol) were reacted for 0.25 h according to the general procedure to afford after chromatography (CH2Cl2) 13a (0.493 g, 78%) as a yellow solid. Mp = 90-92 °C; 1H NMR (500 MHz, CDCl3) δ = 11.99 (s, 1 H), 8.15 (s, 1 H), 7.71 (s, 1 H), 7.60-7.50 (m, 2 H), 7.08 (d, J = 8.1 Hz, 1 H), 6.91-6.88 (m, 1 H), 4.39 (q, J = 7.1 Hz, 2 H), 3.38 (t, J = 7.5 Hz, 2 H), 3.02 (t, J = 7.5 Hz, 2 H), 2.16 (quint, J = 7.6 Hz, 2 H), 1.40 (t, J = 7.2 Hz, 3 H); 13C NMR (500 MHz, CDCl3) δ = 201.1, 166.4, 163.4, 151.2, 146.7, 136.5, 136.4, 133.6, 129.6, 128.7, 127.0, 119.3, 118.9, 118.6, 61.2, 34.3, 32.6, 25.2, 14.5; EIMS (70 eV) m/z (%) = 310 (28, M+), 282 (26), 237 (50), 121 (100), 114 (15); HRMS calcd for C19H18O4 310.1205, found 310.1203; Anal. calc’d for C19H18O4, C 73.55, H 5.85, found C 73.27, H 6.10. Experimental details and charaterization data for the other compounds may be obtained upon request from the authors. Standard 2D NMR experiments were used to unambiguously assign the structures of the products.