References
- 1 Part 2 in this series: Bodwell GJ.
Pi Z.
Pottie IR.
Synlett
1999,
477
-
2a
Boger DL.
J. Heterocyclic Chem.
1996,
33:
1519
-
2b
Van der Plas HC.
Farmaco
1995,
50:
419
-
2c
Afarinkia K.
Vinader V.
Nelson TD.
Posner GH.
Tetrahedron
1992,
48:
9111
-
2d
Boger DL.
Bull. Soc. Chim. Belg.
1990,
99:
599
-
2e
Boger DL.
Weinreb SM.
Hetero Diels-Alder Methodology in Organic
Synthesis
Academic Press;
New York:
1989.
-
2f
Boger DL.
Chem. Rev.
1986,
86:
781
-
2g
Boger DL.
Tetrahedron
1983,
39:
2869
-
For some recent examples see:
-
3a
Bodwell GJ.
Li J.
Angew. Chem.
Int. Ed.
2002,
41:
3261
-
3b
Posner GH.
Woodard BT.
Crawford KR.
Peleg S.
Brown AJ.
Dolan P.
Kensler TW.
Bioorg. Med. Chem. Lett.
2002,
10:
2353
-
3c
Nomak R.
Snyder JK.
Tetrahedron Lett.
2001,
42:
7929
-
3d
Boger DL.
Hong J.
J. Am. Chem.
Soc.
2001,
123:
8515
-
3e
Wan ZK.
Woo GHC.
Snyder JK.
Tetrahedron
2001,
57:
5497
-
3f
Boger DL.
Wolkenberg SE.
J.
Org. Chem.
2000,
65:
9120
-
3g
Boger DL.
Hong J.
Hikota M.
Ishida M.
J. Am. Chem. Soc.
1999,
121:
2471
-
4a
Fringuelli F.
Tattichi A.
Dienes in the Diels-Alder Reaction
John
Wiley and Sons;
New York:
1990.
-
4b
Corey EJ.
Angew. Chem. Int. Ed.
2002,
41:
1650
-
4c
Nicolaou KC.
Snyder SA.
Montagnon T.
Vassilikogiannakis G.
Angew.
Chem. Int. Ed.
2002,
41:
1668
- 5
Bodwell GJ.
Pi Z.
Tetrahedron Lett.
1997,
38:
309
- 6 For a review of 3-formylchromone
see: Sabitha G.
Aldrichimica Acta
1996,
29:
15
- 7 This diene was prepared previously
from 3-formylchromone by a different method, but no report of its
Diels-Alder chemistry has appeared. See: Iwasaki H.
Kume T.
Yamamoto Y.
Akiba K.
Heterocycles
1988,
27:
1599
- 11
Hess BA.
Baldwin JE.
J.
Org. Chem.
2002,
67:
6025
-
12a
Kokubo K.
Kakimoto H.
Oshima T.
J. Am. Chem. Soc.
2002,
124:
6548
-
12b
Peters KS.
Cashin A.
Timbers P.
J. Am. Chem. Soc.
2000,
122:
107
-
12c
Organic Photochemistry
Chapman OL.
Marcel
Dekker;
New York:
1969.
-
12d
Advances
in Photochemistry
Vol. 8:
Pitts JN.
Hammond GS.
Noyes WA.
John
Wiley and Sons;
New York:
1971.
-
13a
Wiensner J.
Kettler K.
Jomaa H.
Schlitzer M.
Bioorg.
Med. Chem. Lett.
2002,
12:
543
-
13b
Lopez A.
Hudson JB.
Towers GHN.
J. Ethnopharmacology
2001,
77:
189
-
13c
Peres V.
Nagem TJ.
Phytochemistry
1997,
44:
191
-
13d
Bennett GJ.
Lee H.-H.
Phytochemistry
1989,
28:
967
-
13e
Gapinski DM.
Mallett BE.
Froelich LL.
Jackson WT.
J.
Med. Chem.
1990,
33:
2798
-
13f
Gapinski DM.
Mallett BE.
Froelich LL.
Jackson WT.
J.
Med. Chem.
1990,
33:
2808
-
14a
Dormán G.
Prestwich GD.
Biochemistry
1994,
33:
5661
-
14b
Chin JW.
Martin AB.
King DS.
Wang L.
Schultz PG.
Proc. Nat. Acad. Sci. U.S.A.
2002,
99:
11020
-
15a
Kao C.-L.
Chern J.-W.
J.
Org. Chem.
2002,
67:
6772
-
15b
Colvin EW.
Hamill BJ.
J.
Chem. Soc., Perkin Trans. 1
1977,
1379
-
16a
Huang Y.-L.
Chen C.-C.
Chen Y.-J.
Huang R.-L.
Shieh B.-J.
J. Nat. Prod.
2001,
64:
903
-
16b
Laursen B.
Denieul M.-P.
Skrydstrup T.
Tetrahedron
2002,
58:
2231
-
16c
Fuller RW.
Westergaard CK.
Collins JW.
Cardellina JHII.
Boyd MR.
J.
Nat. Prod.
1999,
62:
67
-
16d
Cuesta-Rubio O.
Padron A.
Castro HV.
Pizza C.
Rastrelli L.
J.
Nat. Prod.
2001,
64:
973
-
16e
Hou A.-J.
Fukai T.
Shimazaki M.
Sakagami H.
Sun H.-D.
Nomura T.
J. Nat. Prod.
2001,
64:
65
- 17
Mostafa SI.
El-Asmy AA.
El-Shahawi MS.
Transit. Metal Chem.
2000,
25:
470
- 18
Zakrzewski J.
Szymonowski J.
Polym. Degrad. Stabil.
2000,
67:
279
- 19
Denes AR.
Young RA.
Holzforschung
1999,
53:
632
-
20a
Okazaki T.
Hirota N.
Terazima M.
J. Chem. Phys.
1999,
110:
11399
-
20b
Bhasikuttan AC.
Singh AK.
Palit DK.
Sapre AV.
Mittal JP.
J. Phys. Chem. A
1998,
102:
3470
- 21
Taber DF.
Sethuraman MR.
J. Org. Chem.
2000,
65:
254
-
22a
Chaube VD.
Moreau P.
Finiels A.
Ramaswamy AV.
Singh AP.
Catalysis Lett.
2002,
79:
89
-
22b
Martin R.
Org.
Prep. Proced. Int.
1992,
24:
369
-
23a
Storm JP.
Andersson C.-M.
J.
Org. Chem.
2000,
65:
5264
-
23b
Echavarran AM.
Stille JK.
J.
Am. Chem. Soc.
1988,
110:
1557
-
23c
Ishiyama T.
Kizaki H.
Miyaura N.
Suzuki A.
Tetrahedron Lett.
1993,
34:
7595
8
(
E
)-3-(4-Oxo-4
H
-chromen-3-yl)acrylic
acid ethyl ester(7): To a stirred
room temperature suspension of NaH [2.07 g (60% dispersion
in mineral oil), 51.7 mmol] in anhydrous THF (50 mL) under
N2 was added dropwise triethylphosphonoacetate (12.4
g, 55.1 mmol) to give a clear colorless solution. The resulting
solution was then added dropwise to a stirred solution of 3-formylchromone 6 (6.00 g, 34.5 mol) in dry THF (200 mL).
The resulting orange solution was stirred at room temperature for
48 h. The solvent was removed under reduced pressure. The resulting orange
solid was dissolved in CH2Cl2 (50 mL) and
washed with saturated aqueous NaHSO3 solution (4 × 20
mL), dried over MgSO4 and filtered. The solvent was removed
under reduced pressure and the residue was subjected to column chromatography
(silica gel, 2% EtOAc/CH2Cl2)
to afford 7 (6.64 g, 79%) as a
yellow solid. Mp = 96-98 °C (Lit.
[7]
mp not reported); 1H
NMR (500 MHz, CDCl3) δ = 8.29 (dd, J = 8.2 Hz, 1.7 Hz, 1 H), 8.12
(s, 1 H), 7.74-7.68 (m, 1 H), 7.49-7.43 (m, 2
H), 7.40 (d, J = 15.8 Hz, 1
H), 7.32 (d, J = 15.8 Hz, 1
H), 4.26 (q, J = 7.1 Hz, 2 H),
1.33 (t, J = 7.0 Hz, 3 H).
9 A stepwise mechanism, i.e. Michael
addition followed by an intramolecular Mannich reaction cannot be
ruled out. We will comment further on this topic in forthcoming publications.
10
General procedure
for the reaction of diene 7 with enamines: A solution of diene 7 (0.500 g, 2.05 mmol) and the enamine
(1.5 equivalents) in CH2Cl2 (12.5 mL) was stirred
at room temperature under N2 until the starting material
had been consumed or no further reaction was evident (according
to TLC analysis). The mixture was washed with 1 M aqueous HCl solution
(4 × 10 mL). The organic layer was dried over MgSO4,
filtered and the solvent was removed under reduced pressure. The
product was purified by column chromatography on silica gel. The products
obtained from chromatography did not require further purification
for analysis. All new compounds were characterized by melting point, 1H
NMR, 13C NMR, EIMS and HRMS and/or
elemental analysis. For example: 6-(2-Hydroxybenzoyl)indan-4-carboxylic
acid ethyl ester(13a): Diene 7 and 1-(cyclopent-1-enyl)pyrrolidine 12a (0.422 g, 3.07 mmol) were reacted for
0.25 h according to the general procedure to afford after chromatography (CH2Cl2) 13a (0.493 g, 78%) as a yellow
solid. Mp = 90-92 °C; 1H
NMR (500 MHz, CDCl3) δ = 11.99 (s,
1 H), 8.15 (s, 1 H), 7.71 (s, 1 H), 7.60-7.50 (m, 2 H),
7.08 (d, J = 8.1 Hz, 1 H), 6.91-6.88
(m, 1 H), 4.39 (q, J = 7.1 Hz,
2 H), 3.38 (t, J = 7.5 Hz, 2
H), 3.02 (t, J = 7.5 Hz, 2 H),
2.16 (quint, J = 7.6 Hz, 2 H),
1.40 (t, J = 7.2 Hz, 3 H); 13C
NMR (500 MHz, CDCl3) δ = 201.1, 166.4,
163.4, 151.2, 146.7, 136.5, 136.4, 133.6, 129.6, 128.7, 127.0, 119.3,
118.9, 118.6, 61.2, 34.3, 32.6, 25.2, 14.5; EIMS (70 eV) m/z (%) = 310
(28, M+), 282 (26), 237 (50), 121 (100), 114
(15); HRMS calcd for C19H18O4 310.1205,
found 310.1203; Anal. calc’d for C19H18O4,
C 73.55, H 5.85, found C 73.27, H 6.10. Experimental details and
charaterization data for the other compounds may be obtained upon
request from the authors. Standard 2D NMR experiments were used
to unambiguously assign the structures of the products.