Plant Biol (Stuttg) 2002; 4(5): 558-566
DOI: 10.1055/s-2002-35431
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Solute Heterogeneity and Osmotic Adjustment in Different Leaf Structures of Semi-Leafless Pea (Pisum sativum L.) Subjected to Water Stress

E. M. González 1,2 , C. Arrese-Igor 1 , P. M. Aparicio-Tejo 1 , M. Royuela 1 , H.-W. Koyro 2
  • 1 Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, 31006 Pamplona, Spain
  • 2 Institut für Pflanzenökologie, Universität Giessen, 35392 Giessen, Germany
Further Information

Publication History

Received: August 12, 2002

Accepted: September 5, 2002

Publication Date:
15 November 2002 (online)

Abstract

Semi-leafless varieties of pea have considerable agronomic importance and it has been suggested that they may have a superior response to water deficits than conventional varieties. However, these varieties are poorly characterized from a physiological point of view and there is lack of a physiological basis for their supposed better performance under conditions of water deficit. Here, we describe the solute distribution in the different leaf structures of a semi-leafless pea variety (Pisum sativum L.) under non-limiting water conditions and under water stress. A conventional variety was subjected to the same conditions for comparative purposes. A detailed study was carried out both at the tissue level and at the single cell level. In control conditions, epidermal vacuoles of tendrils showed a different ion distribution of those of the laminar leaf structures. However, under water deficit, only stipules of the semi-leafless variety showed a significantly higher capability to increase osmolarity. This occurred by accumulating potassium, magnesium and chloride to a higher extent than other leaf structures. The inability of performing an adequate osmotic adjustment in tendrils may be the cause of the lack of a better response to water deficit.

Abbreviations

PPF: photosynthetic photon fux

WUE: water use efficiency

References

  • 01 APHA . (1975) Standard methods for the examination of water and wastewater. American Public Health Association 14th edition. Rand, M. C., Greenberg, A. E., and Taras M. J., eds. Washington pp. 423-427
  • 02 Armstrong,  E. L.,, Pate,  J. S.,, and Tennant,  D.. (1994);  The field pea crop in south western Australia. Patterns of water use and root growth in genotypes of contrasting morphology and growth habit.  Australian Journal of Plant Physiology. 21 517-532
  • 03 Baigorri,  H.,, Antolín,  M. C.,, and Sanchéz Díaz,  M.. (1999);  Reproductive response of two morphologically different pea cultivars to drought.  European Journal of Agronomy. 10 119-128
  • 04 Côté,  R., and Grodzinski,  B.. (1990) Photosynthesis, photorespiration and partitioning in leaflets, stipules and tendrils of Pisum sativum. . Current research in photosynthesis IV. Baltscheffsky, M., ed. Boston; Kluwer Academic Publisher pp. 79-82
  • 05 Côté,  R.,, Thompson,  R. G.,, and Grodzinski,  B.. (1992);  Photosynthetic oxygen production facilitates translocation of 14C labelled photoassimilates from tendrils and leaflets of Pisum sativum L.  Journal of Experimental Botany. 43 819-829
  • 06 Dale,  J. E., and Stucliffe,  J. F.. (1986) Water relations of plant cells. Plant Physiology, Vol. IX. Steward, F. C., Stucliffe, J. F., and Dale, J. E., eds. Orlando, Florida; Academic Press pp. 1-48
  • 07 Dietz,  K.-J.,, Schramm,  M.,, Lang,  B.,, Lanzl-Schramm,  A.,, Dürr,  C.,, and Martinoia,  E.. (1992);  Characterization of the epidermis from barley primary leaves. II. The role of the epidermis in ion compartmentation.  Planta. 187 431-437
  • 08 Dubois,  M.,, Gilles,  K. A.,, Hamilton,  J. K.,, Rebers,  P. A.,, and Smith,  F.. (1956);  Colorimetric method for determination of sugars and related substances.  Analytical Chemistry. 28 350-356
  • 09 Foyer,  C. H.,, Valadier,  M.-H.,, Migge,  A.,, and Becker,  T. W.. (1998);  Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves.  Plant Physiology. 117 283-292
  • 10 Fricke,  W.,, Leigh,  R. A.,, and Tomos,  A. D.. (1994 a);  Concentration of inorganic and organic solutes in extracts from individual epidermal, mesophyll and bundle-sheet cell of barley leaves.  Planta. 192 310-316
  • 11 Fricke,  W.,, Leigh,  R. A.,, and Tomos,  A. D.. (1994 b);  Epidermal solute concentration and osmolarity of barley leaves studied at the single-cell level. Changes along the leaf blade, during leaf ageing and NaCl stress.  Planta. 192 317-323
  • 12 Fricke,  W.,, Pritchard,  J.,, Leigh,  R. A.,, and Tomos,  A. D.. (1994 c);  Cells of the upper and lower epidermis of barley (Hordeum vulgare L.) leaves exhibit distinct pattern of vacuolar solutes.  Plant Physiology. 104 1202-1208
  • 13 González,  E. M.,, Cabrerizo,  P. M.,, Royuela,  M.,, Aparicio-Tejo,  P. M.,, and Arrese-Igor,  C.. (2001);  Nitrate reduction in tendrils of semi-leafless pea.  Physiologia Plantarum. 111 329-335
  • 14 Harvey,  D. M.. (1980);  Seed production in leafless and conventional phenotypes of Pisum sativum L. in relation to water availability within a controlled environment.  Annals of Botany. 45 673-680
  • 15 Harvey,  D. M., and Goodwin,  I.. (1978);  The photosynthetic net carbon dioxide exchange potential in conventional and “leafless” phenotypes of Pisum sativum L. in relation to foliage area, dry matter production and seed yield.  Annals of Botany. 42 1091-1098
  • 16 Heath,  M. C., and Hebblethwaite,  P. D.. (1984);  A basis for improving the dried pea crop.  Outlook in Agriculture. 13 195-202
  • 17 Hinde,  P.,, Richardson,  R.,, Koyro,  H.-W.,, and Tomos,  A. D.. (1998);  Quantitative X-ray microanalysis of solutes in individual plant cells: a comparation of microdroplet and in situ frozen-hydrated data.  Journal of Microscopy. 191 303-310
  • 18 Koyro,  H.-W.. (2000);  Effect of high NaCl-salinity on plant growth, leaf morphology, and ion composition in leaf tissues of Beta vulgaris ssp. maritima.  Journal of Applied Botany. 74 67-73
  • 19 Koyro,  H.-W., and Huchzermeyer,  B.. (1999) Influence of high-salinity on growth, water and osmotic relations of the halophyte Beta vulgaris ssp. maritima. Development of a quick check. Progress in Biometeorology. Contributions to halophyte uses in different climates. Issue 1 Ecological and Ecophysiological Research. Lieth, H., Hamdy, A., and Koyro, H.-W., eds. Leiden; Backhys Publishers pp. 89-103
  • 20 Koyro,  H.-W., and Stelzer,  R.. (1988);  Ion concentration in cytoplasm and vacuoles of rhizodermis cells from NaCl treated Sorghum, Spartina and Puccinellia plants.  Journal of Plant Physiology. 133 441-446
  • 21 Leigh,  R. A., and Storey,  R.. (1993);  Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity.  Journal of Experimental Botany. 44 755-762
  • 22 Leigh,  R. A., and Tomos,  A. D.. (1993);  Ion distribution in cereal leaves: pathways and mechanisms. Philosophical Transactions of the Royal Society of London.  Biology Science. 341 75-86
  • 23 Leigh,  R. A., and Wyn Jones,  R. G.. (1986) Cellular compartmentation in plant nutrition: The selective cytoplasm and the promiscuous vacuole. Advances in plant nutrition, Vol. 2. Tinker, P. B. and Läuchi, A., eds. New York; Praeger pp. 249-279
  • 24 Malone,  M.,, Leigh,  R. A.,, and Tomos,  A. D.. (1989);  Extraction and analysis of sap from individual wheat leaf cells: the effect of sampling speed on the osmotic pressure of extracted sap.  Plant Cell and Environment. 12 919-926
  • 25 Martin,  I.,, Tenorio,  J. L.,, and Ayerbe,  L.. (1994);  Yield, growth and water use of conventional and semi-leafless peas in semi-arid environments.  Crop Science. 34 1576-1583
  • 26 Martinoia,  E.,, Heck,  U.,, and Wiemken,  A.. (1981);  Vacuoles as storage compartments for nitrate in barley leaves.  Nature. 289 292-294
  • 27 Miller,  A. J.,, Cookson,  S. J.,, Smith,  S. J.,, and Wells,  D. M.. (2001);  The use of microelectrodes to investigate compartmentation and the transport of metabolised inorganic ions in plants.  Journal of Experimental Botany. 52 541-549
  • 28 Nicholas,  D. J. D., and Nason,  A.. (1957);  Determination of nitrate and nitrite.  Methods in Enzymology. 3 981-984
  • 29 Outlaw,  W. H., and Zhang,  S.. (2001);  Single-cell dissection and microdroplet chemistry.  Journal of Experimental Botany. 52 605-614
  • 30 Penny,  M. G., and Bowling,  D. J. F.. (1974);  A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening.  Planta. 119 17-25
  • 31 Pitman,  M. G.,, Läuchli,  A.,, and Stelzer,  R.. (1981);  Ion distribution in roots of barley seedlings measured by electron probe X-ray microanalysis.  Plant Physiology. 68 673-679
  • 32 Premanchandra,  G. S., and Joly,  R. J.. (1992);  Solutes contributing to osmotic potential in young versus mature leaves of Cacao seedlings.  Journal of Plant Physiology. 139 355-360
  • 33 Rigaud,  J., and Puppo,  A.. (1975);  Indole-3-acetic catabolism by soybean bacteroids.  Journal of General Microbiology. 88 223-228
  • 34 Scholander,  P. F.,, Hammel,  H. T.,, Bradstreet,  E. D.,, and Hemmingsen,  E. A.. (1965);  Sap pressure in vascular plants.  Science. 148 339-346
  • 35 Shaner,  D. L., and Boyer,  J. S.. (1976);  Nitrate reductase activity in maize (Zea mays L.) leaves. I. Regulation by nitrate flux.  Plant Physiology. 58 499-504
  • 36 Silim,  S. N.,, Hebblethwaite,  P. D.,, and Jones,  C.. (1992);  Irrigation and water use in leafless peas Pisum sativum. .  Journal of Agricultural Science. 119 211-222
  • 37 Snoad,  B.. (1974);  A preliminary assesment of leafless peas.  Euphytica. 23 257-265
  • 38 Storey,  R.,, Pitman,  M. G.,, and Stelzer,  R.. (1983);  X-ray microanalysis of cells and cell compartments of Atriplex spongiosa. II. Roots.  Journal of Experimental Botany. 34 1196-1206
  • 39 Tomos,  A. D., and Sharrock,  R. A.. (2001);  Cell sampling and analysis (SiCSA): metabolites measured at single cell resolution.  Journal of Experimental Botany. 52 623-630
  • 40 Turner,  N. C.. (1986);  Crop water deficits: a decade of progress.  Advances in Agronomy. 39 1-45
  • 41 Turner,  N. C., and Long,  M. J.. (1980);  Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique.  Australian Journal of Plant Physiology. 7 527-537
  • 42 Van der Leij,  M.,, Smith,  S. J.,, and Miller,  A. J.. (1998);  Remobilization of vacuolar stored nitrate in barley root cells.  Planta. 205 64-72
  • 43 Weyers,  J., and Meidner,  H.. (1990) Methods in stomatal research. Essex-England; Longman Group UK Limited pp. 6-12
  • 44 Wilson,  D. R.,, Hanson,  R.,, and Jermyn,  W. A.. (1981);  Growth and water use of conventional and semi-leafless peas.  Proceedings of Agronomy Society of New Zealand. 11 35-39
  • 45 Yemm,  E. W., and Cocking,  E. C.. (1955);  The determination of amino acids with ninhydrin.  Analyst. 80 209-214
  • 46 Zhen,  R.-G.,, Koyro,  H.-W.,, Leigh,  R. A.,, Tomos,  A.,, and Miller,  A. J.. (1991);  Compartmental nitrate concentration in barley root cells measured with nitrate-selective microelectrodes and by single-cell sap sampling.  Planta. 185 356-361

C. Arrese-Igor

Departamento de Ciencias del Medio Natural
Universidad Pública de Navarra

31006 Pamplona
Spain

Email: cesarai@unavarra.es

Section Editor: A. Läuchli

    >