Plant Biol (Stuttg) 2002; 4(4): 464-473
DOI: 10.1055/s-2002-34131
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Linear Relation between Cell Growth and Water Channels Conducted Lp in Nitellopsis

G. L. Zhu, M. J. Zhu, Q. Ye, S. Li, R. Zhu, Y. Cao, J. Chen, X. C. Wang
  • College of Biology, State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, China (PRC)
Further Information

Publication History

Received: August 24, 2001

Accepted: May 31, 2002

Publication Date:
18 September 2002 (online)

Abstract

The effect of Lp on growth of internodes of Nitellopsis obtusa (Desv. In Lois) J. Gr. was studied, with treatments of HgCl2 and antibodies against aquaporins (anti-RD28) on the plasmalemma, using laser scanning confocal microscopy, and simultaneous monitoring of cell growth, turgor, Em and Lp using a turgor/membrane potential probe (T-EP probe). Laser scanning confocal immunofluorescent microscopy indicated the immunoreaction of anti-RD28 on the plasma membrane. Experiments showed that, following treatment with 25 μM HgCl2, cell growth was entirely and Lp largely inhibited, and no growth recovery was seen even when Lp was completely reversed by replacement of HgCl2 with β-mercaptoethanol (ME). Anti-RD28 inhibited both Lp and growth of internodes of N. obtusa by about 80 %, and the possible influences on cell growth of changes in turgor, respiration and pH in cell walls, being excluded during treatment. It was confirmed experimentally that enlargement growth of internodes of N. obtusa was linearly related to cell Lp.

Abbreviations

RD28: aquaporins in plasmalemma of A. thaliana (28kD protein)

anti-RD28: antibody against fusion protein including conservative section in loop E of RD28

XET: xyloglucan endo-transglycosylase

References

  • 01 Agre,  P.,, Brown,  D.,, and Nielsen,  S.. (1995);  Aquaporin water channels: unanswered questions and unresolved controversies.  Curr. Opin. in Cell Biol.. 7 472-485
  • 02 Barone,  L. M.,, Shih,  C.,, and Wasserman,  B. P.. (1997);  Mercury-induced conformational changes and identification of conserved surface loops in plasma membrane aquaporins from higher plants: Topology of PMIP31 from Beta vulgaris L.  J. Biol. Chem.. 272 30672-30677
  • 03 Chapmann,  R. L., and Buchheim,  M. A.. (1991);  Ribosomal RNA gene sequences: Analysis and significance in the phylogeny and taxonomy of green algae.  Crit. Rev. Pl. Sci.. 10 343-368
  • 04 Chrispeels,  M. J., and Maurel,  C.. (1994);  Aquaporins: the molecular basis of facilitated water movement through living plant cells.  Plant Physiol.. 105 9-13
  • 05 Cleland,  R.. (1971);  Cell wall extension.  Annu. Rev. Plant Physiol.. 22 197-222
  • 06 Cosgrove,  D. J.. (1997);  Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement.  The Plant Cell. 9 1031-1041
  • 07 Fry,  S. C.. (1995);  Polysaccharide-modifying enzymes in the plant cell wall.  Annu. Rev. Plant Physiol.. 46 497-520
  • 08 Green,  P. B.. (1968);  Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure.  Plant Physiol.. 43 1169-1184
  • 09 Henzler,  T., and Steudle,  E.. (1995);  Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane.  J. Exp. Bot.. 46 199-209
  • 10 Johansson,  I.,, Karlsson,  M.,, Shukla,  V. K.,, Chrispeels,  M. J.,, Larsson,  C.,, and Kjellbom,  P.. (1998);  Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation.  Plant Cell. 10 451-459
  • 11 Kamiya,  N.,, Tazawa,  M.,, and Takata,  T.. (1963);  The relation of turgor pressure to cell volume in Nitella with special reference to the mechanical properties of the cell wall.  Protoplasma. 57 501-521
  • 12 Lockhart,  J. A.. (1965);  An analysis of irreversible plant cell elongation.  J. Theor. Biol.. 8 264-275
  • 13 Passioura,  J. B., and Fry,  S. C.. (1992);  Turgor and cell expansion: beyond the Lockhart equation.  Australian Journal of Plant Physiology. 19 565-576
  • 14 Pfeffer,  W.. (1903) The Physiology of Plants, Vol. 2. Oxford; At the Clarendon Press pp. 118-119 (English translation)
  • 15 Preston,  G. M.,, Carroll,  T. P.,, Guggino,  W. B.,, and Agre,  P.. (1992);  Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein.  Science. 256 385-387
  • 16 Preston,  G. M.,, Jung,  J. S.,, Guggino,  W. B.,, and Agre,  P.. (1993);  The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel.  J. Biol. Chem.. 268 17-20
  • 17 Probine,  M. C., and Preston,  R. D.. (1962);  Cell growth and the structure and mechanical properties of the wall in internodal cells of Nitella opaca. II. Mechanical properties of the walls.  J. Exp. Bot.. 13 111-127
  • 18 Proseus,  T. E.,, Ortega,  J. K. E.,, and Boyer,  J. S.. (1999);  Separating growth from elastic deformation during cell enlargement.  Plant Physiol.. 119 775-784
  • 19 Ray,  P. M.,, Green,  P. B.,, and Cleland,  R.. (1972);  Role of turgor in plant cell growth.  Nature. 239 163-164
  • 20 Rayle,  D. L., and Cleland,  R. E.. (1992);  The acid growth theory of auxin-induced cell elongation is alive and well.  Plant Physiol.. 99 1271-1274
  • 21 Reizer,  J.,, Reizer,  A.,, and Saier,  M. H. J.. (1993);  The MIP family of integral membrane channel proteins: Sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins.  Crit.Rev. Biochem. Mol. Biol.. 28 235-257
  • 22 Schütz,  K., and Tyerman,  S. D.. (1997);  Water channels in Chara corallina. .  J. Exp. Bot.. 48 1511-1518
  • 23 Solomon,  A. K.. (1968);  Characterization of biological membrane by equivalent pore.  J. Gen. Physiol.. 51 335S-364S
  • 24 Stamer,  W. D.,, Snyder,  R. W.,, and Regan,  J. W.. (1996);  Characterization of the transmembrane orientation of Aquaporin-1 using antibodies to recombinant fusion proteins.  Biochem.. 35 16313-16318
  • 25 Steudle,  E.. (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell tissue and organ level. Water deficits: plant responses from cell to community. Smith, J. A. C. and Griffith, H., eds. Oxford; Bios Scientific Publishers pp. 5-36
  • 26 Steudle,  E., and Henzler,  T.. (1995);  Water channels in plants: do basic concepts of water transport change?.  J. Exp. Bot.. 46 1067-1076
  • 27 van Os,  C. H.,, Deen,  P. M. T.,, and Dempster,  J. A.. (1994);  Aquaporins: water selective channels in biological membranes. Molecular structure and tissue distribution.  Biochim. Biophys. Acta. 1197 291-309
  • 28 Waiz,  T.,, Hirai,  T.,, Murata,  K.,, Heymann,  J. B.,, Mitsuoka,  K.,, Fujiyoshi,  Y.,, Smith,  B. L.,, Agre,  P.,, and Engel,  A.. (1997);  The three-dimensional structure of aquaporin-1.  Nature. 387 624-627
  • 29 Wayne,  R., and Tazawa,  M.. (1990);  Nature of the water channels in the internodal cells of Nitellopsis. .  J. Membr. Biol.. 116 31-39
  • 30 Yamada,  S.,, Katsuhara,  M.,, Kelly,  W. B.,, Michalowski,  C. B.,, and Bohnert,  H. J.. (1995);  A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant.  Plant Cell. 7 1129-1142
  • 31 Zhang,  R.,, van Hoek,  A. N.,, Biwersi,  J.,, and Verkman,  A. S.. (1993);  A point mutation at cysteine-189 blocks the water permeability of rat kidney water channel CHIP28k.  Biochemistry. 32 2938-2941
  • 32 Zhu,  G. L.. (1996);  A new turgor/membrane potential probe simultaneously measures turgor and electrical membrane potential.  Bot. Acta. 109 51-56
  • 33 Zhu,  G. L., and Boyer,  J. S.. (1992);  Enlargement in Chara studied with a turgor clamp: growth rate is not determined by turgor.  Plant Physiol.. 100 2071-2080
  • 34 Zhu,  G. L.,, Zhu,  R.,, Zhou,  W.,, Ye,  Q.,, Zhen,  Z. L.,, and Yuan,  M.. (2000);  Both intact microfilaments and cortical microtubules are involved in the maintenance of the growth rate of internodal cells of Nitellopsis. .  Plant biol.. 2 195-203
  • 35 Zhu,  M. J.,, Wang,  X. C.,, Chen,  J.,, and Du,  M.. (1999);  Expression of conservative sections of RD28 in E. coli and preparation of the antibody against RD28.  J. Agri. Biotech.. 7 215-218
  • 36 Zimmermann,  U., and Steudle,  E.. (1975);  The hydraulic conductivity and volumetric elastic modulus of cells and isolated cell walls of Nitella and Chara spp: pressure and volume effects.  Aust. J. Plant Physiol.. 2 1-12

G. L. Zhu

College of Biology
State Key Laboratory of Plant Physiology and Biochemistry
China Agricultural University

Beijing 100094
China (PRC)

Email: glzhu@mail.cau.edu.cn

Section Editor: U. Lüttge

    >