Plant Biol (Stuttg) 2002; 4(4): 474-483
DOI: 10.1055/s-2002-34130
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Evolutionary Aspects of MADS-box Genes in the Eusporangiate Fern Ophioglossum

T. Münster 1 , W. Faigl 1 , H. Saedler 1 , G. Theißen 1,2
  • 1 Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Köln, Germany
  • 2 Friedrich-Schiller-Universität, Lehrstuhl für Genetik, Philosophenweg 12, 07743 Jena, Germany
Further Information

Publication History

Received: March 20, 2002

Accepted: June 7, 2002

Publication Date:
18 September 2002 (online)

Abstract

The MIKC-type MADS-box genes of seed plants encode transcription factors which are typically expressed in a tissue- or organ-specific way. In contrast, the MIKC genes of the fern Ceratopteris isolated so far, show fairly ubiquitous expression in both reproductive and non-reproductive organs. In order to determine whether this is a feature which is unique to a lineage of highly derived, leptosporangiate ferns, we initiated a characterization of the family of MIKC-type MADS-box genes of the eusporangiate “fern” Ophioglossum. Within the large clade of ferns and their allies, Ophioglossum is only very distantly related to Ceratopteris. cDNAs were isolated which represent at least four different Ophioglossum MIKC-type genes, termed OPM1, OPM3 - OPM5. Hybridization of genomic DNA gel blots, however, revealed that appreciably more MADS-box genes are present in the Ophioglossum genome. As for the MIKC-type genes from Ceratopteris, phylogeny reconstructions did not reveal orthology to seed plant genes for any of these. For OPM1 and OPM5, however, a relatively close relationship to some Ceratopteris genes was moderately supported. Semi-quantitative RT-PCR revealed that OPM1, OPM3 and OPM5 are expressed in both the vegetative (trophophore) and the reproductive (sporophore) part of the Ophioglossum leaf. In contrast, expression of OPM4 is restricted to the sporophore, suggesting a specific role in generative development for that gene. These findings suggest that relatively ubiquitous expression is a typical, but not absolute, feature of MIKC-type MADS-box genes from ferns and their allies. Taken together, the data outlined here corroborate the view that the phylogeny of MIKC-type MADS-box genes took different pathways in ferns and their allies on the one hand, and seed plants on the other hand, involving numerous independent gene duplications in both lineages, and distinct differences in the ubiquity of the expression patterns and, by inference, function. The implications of these findings for a better understanding of the evolution of vascular plants are discussed.

References

  • 01 Alvarez-Buylla,  E. R.,, Liljegren,  S. J.,, Pelaz,  S.,, Gold,  S. E.,, Burgeff,  C.,, Ditta,  G. S.,, Vergara-Silva,  F.,, and Yanofsky,  M. F.. (2000 a);  MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes.  Plant J.. 24 457-466
  • 02 Alvarez-Buylla,  E. R.,, Pelaz,  S.,, Liljegren,  S. J.,, Gold,  S. E.,, Burgeff,  C.,, Ditta,  G. S.,, de Pouplana,  L. R.,, Martinez-Castilla,  L.,, and Yanofsky,  M. F.. (2000 b);  An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.  Proc. Natl. Acad. Sci. USA. 97 5328-5333
  • 03 Becker,  A.,, Winter,  K.-U.,, Meyer,  B.,, Saedler,  H.,, and Theißen,  G.. (2000);  MADS-box gene diversity in seed plants 300 million years ago.  Mol. Biol. Evol.. 17 1425-1434
  • 04 Cho,  S.,, Jang,  S.,, Chae,  S.,, Chung,  K. M.,, Moon,  Y.-H.,, An,  G.,, and Jang,  S. K.. (1999);  Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.  Plant Mol. Biol.. 40 419-429
  • 05 Chomczynski,  P., and Sacchi,  N.. (1987);  Single-step method of RNA-isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal. Biochem.. 162 156-159
  • 06 Donoghue,  M. J., and Doyle,  J. A.. (2000);  Seed plant phylogeny: demise of the anthophyte hypothesis?.  Cur. Biol.. 10 R106-R109
  • 07 Egea-Cortines,  M.,, Saedler,  H.,, and Sommer,  H.. (1999);  Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. .  EMBO J.. 18 5370-5379
  • 08 Fischer,  A.,, Baum,  N.,, Saedler,  H.,, and Theißen,  G.. (1995);  Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies.   Nucl. Acids Res.. 23 1901-1911
  • 09 Frohman,  M. A.,, Dush,  M. K.,, and Martin,  G. R.. (1988);  Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.  Proc. Natl. Acad. Sci. USA. 85 8998-9002
  • 10 Goremykin,  V.,, Bobrova,  V.,, Pahnke,  J.,, Troitsky,  A.,, Antonov,  A.,, and Martin,  W.. (1996);  Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms.  Mol. Biol. Evol.. 13 383-396
  • 11 Goswami,  H. K.. (1987);  Ophioglossales. I: an overview.  Bionature. 7 47-89
  • 12 Graham,  L. E.,, Cook,  M. E.,, and Busse,  J. S.. (2000);  The origin of plants: body plan changes contributing to a major evolutionary radiation.  Proc. Natl. Acad. Sci USA. 97 4535-4540
  • 13 Hasebe,  M.. (1999);  Evolution of reproductive organs in land plants.  J. Plant Res.. 112 463-474
  • 14 Hasebe,  M.,, Wen,  C.-K.,, Kato,  M.,, and Banks,  J. A.. (1998);  Characterization of MADS homeotic genes in the fern Ceratopteris richardii. .  Proc. Natl. Acad. Sci. USA. 95 6222-6227
  • 15 Henschel,  K.,, Kofuji,  R.,, Hasebe,  M.,, Saedler,  H.,, Münster,  T.,, and Theißen,  G.. (2002);  Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. .  Mol. Biol. Evol.. 19 801-814
  • 16 Hickok,  L. G.,, Warne,  T. R.,, and Fribourg,  R. S.. (1995);  The biology of the fern Ceratopteris and its use as a model system.  Int. J. Plant Sci.. 156 332-345
  • 17 Honma,  T., and Goto,  K.. (2001);  Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.  Nature. 409 525-529
  • 18 Huang,  H.,, Tudor,  M.,, Weiss,  C. A.,, Hu,  Y.,, and Ma,  H.. (1995);  The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein.  Plant Mol. Biol.. 28 549-567
  • 19 Kato,  M.. (1988);  The phylogenetic relationship of Ophioglossaceae.  Taxon. 37 381-386
  • 20 Kato,  M.. (1990);  Ophioglossaceae: a hypothetical archetype for the angiosperm carpel.  Bot. J. Linn. Soc.. 102 303-311
  • 21 Kato,  M.. (1991);  Further comments on an ophioglossoid archetype for the angiosperm carpel: ovular paedomorphosis.  Taxon. 40 189-194
  • 22 Kenrick,  P., and Crane,  P. R.. (1997);  The origin and early evolution of plants on land.  Nature. 389 33-39
  • 23 Kofuji,  R., and Yamaguchi,  K.. (1997);  Isolation and phylogenetic analysis of MADS genes from the fern Ceratopteris richardii. .  J. Phytogeogr. Taxon. 45 83-91
  • 24 Krogan,  N. T., and Ashton,  N. W.. (2000);  Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues.  New Phytol.. 147 505-517
  • 25 Liljegren,  S. J.,, Ditta,  G. S.,, Eshed,  Y.,, Savidge,  B.,, Bowman,  J. L.,, and Yanofsky,  M. F.. (2000);  SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. .  Nature. 404 766-770
  • 26 Manhart,  J. R.. (1994);  Phylogenetic analysis of green plant rbcL sequences.  Mol. Phyl. Evol.. 3 114-127
  • 27 Mouradov,  A.,, Glassick,  T. V.,, Hamdorf,  B. A.,, Murphy,  L. C.,, Marla,  S. S.,, Yang,  Y.,, and Teasdale,  R.. (1998);  Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine.  Plant Phys.. 117 55-61
  • 28 Mouradov,  A.,, Hamdorf,  B.,, Teasdale,  R. D.,, Kim,  J. T.,, Winter,  K.-U.,, and Theißen,  G.. (1999);  A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes.  Dev. Gen.. 25 245-252
  • 29 Münster,  T.,, Pahnke,  J.,, Di Rosa,  A.,, Kim,  J. T.,, Martin,  W.,, Saedler,  H.,, and Theißen,  G.. (1997);  Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants.  Proc. Natl. Acad. Sci. USA. 94 2415-2420
  • 30 Niklas,  K. J.. (2000);  The evolution of plant body plans - a biomechanical perspective.  Annals Bot.. 85 411-438
  • 31 Pryer,  K. M.,, Schneider,  H.,, Smith,  A. R.,, Cranfill,  R.,, Wolf,  P. G.,, Hunt,  J. S.,, and Sipes,  S. D.. (2001);  Horsetails and ferns are a monophyletic group and the closest relatives to seed plants.  Nature. 409 618-622
  • 32 Riechmann,  J. L.,, Heard,  J.,, Martin,  G.,, Reuber,  L.,, Jiang,  C.-Z.,, Keddie,  J.,, Adam,  L.,, Pineda,  O.,, Ratcliffe,  O. J.,, Samaha,  R. R.,, Creelman,  R.,, Pilgrim,  M.,, Broun,  P.,, Zhang,  J. Z.,, Ghandehari,  D.,, Sherman,  B. K.,, and Yu,  G.-L.. (2000);  Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.  Science. 290 2105-2110
  • 33 Riechmann,  J. L., and Meyerowitz,  E. M.. (1997);  MADS domain proteins in plant development.  Biol. Chem.. 378 1079-1101
  • 34 Rutledge,  R.,, Regan,  S.,, Nicolas,  O.,, Fobert,  P.,, Coté,  C.,, Bosnich,  W.,, Kauffeldt,  C.,, Sunohara,  G.,, Séguin,  A.,, and Stewart,  D.. (1998);  Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. .  Plant J.. 15 625-634
  • 35 Schneider-Poetsch,  H. A. W.,, Kolukisaoglu,  Ü.,, Clapham,  D. H.,, Hughes,  J.,, and Lamparter,  T.. (1998);  Non-angiosperm phytochromes and the evolution of vascular plants.  Phys. Plant.. 102 612-622
  • 36 Shindo,  S.,, Ito,  M.,, Ueda,  K.,, Kato,  M.,, and Hasebe,  M.. (1999);  Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants.  Evol. Dev.. 1 180-190
  • 37 Sundström,  J.,, Carlsbecker,  A.,, Svensson,  M. E.,, Svenson,  M.,, Johanson,  U.,, Theißen,  G.,, and Engström,  P.. (1999);  MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms.  Dev. Gen.. 25 253-266
  • 38 Svensson,  M. E.,, Johannesson,  H.,, and Engström,  P.. (2000);  The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures.  Gene. 253 31-43
  • 39 Tandre,  K.,, Albert,  V. A.,, Sundas,  A.,, and Engström,  P.. (1995);  Conifer homologues to genes that control floral development in angiosperms.  Plant Mol. Biol.. 27 69-78
  • 40 Tandre,  K.,, Svenson,  M.,, Svensson,  M. E.,, and Engström,  P.. (1998);  Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms.  Plant J.. 15 615-623
  • 41 Theißen,  G.. (2001);  Development of floral organ identity: stories from the MADS house.  Curr. Opin. Plant Biol.. 4 75-85
  • 42 Theißen,  G.,, Becker,  A.,, Di Rosa,  A.,, Kanno,  A.,, Kim,  J. T.,, Münster,  T.,, Winter,  K.-U.,, and Saedler,  H.. (2000);  A short history of MADS-box genes in plants.  Plant. Mol. Biol.. 42 115-149
  • 43 Theißen,  G.,, Kim,  J.,, and Saedler,  H.. (1996);  Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.  J. Mol. Evol.. 43 484-516
  • 44 Theißen,  G., and Saedler,  H.. (1995);  MADS-box genes in plant ontogeny and phylogeny: Haeckel's “biogenetic law” revisited.  Curr. Opin. Gen. Dev.. 5 628-639
  • 45 Theißen,  G., and Saedler,  H.. (1999);  The Golden Decade of molecular floral development (1990 - 1999): a cheerful obituary.  Dev. Gen.. 25 181-193
  • 46 Theißen,  G., and Saedler,  H.. (2001);  Floral quartets.  Nature. 409 469-471
  • 47 Vergara-Silva,  F.,, Martinez-Castilla,  L.,, and Alvarez-Buylla,  E. R.. (2000);  MADS-box genes: development and evolution of plant body plans.  J. Phycol.. 36 803-812
  • 48 Wagner,  W. H.. (1990) Ophioglossaceae. The families and genera of vascular plants. Kubitzki, K., ed. Berlin, Heidelberg, New York; Springer-Verlag pp. 193-197
  • 49 Weigel,  D., and Meyerowitz,  E. M.. (1994);  The ABCs of floral homeotic genes.  Cell. 78 203-209
  • 50 Winter,  K.-U.,, Becker,  A.,, Münster,  T.,, Kim,  J. T.,, Saedler,  H.,, and Theissen,  G.. (1999);  MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants.  Proc. Natl. Acad. Sci. USA. 96 7342-7347
  • 51 Wolf,  P. G.. (1997);  Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes.  Amer. J. Bot.. 84 1429-1440
  • 52 Wolf,  P. G.,, Pryer,  K. M.,, Smith,  A. R.,, and Hasebe,  M.. (1998) Phylogenetic studies of extant pteridophytes. Molecular systematics of plants II: DNA sequencing. Soltis, D. E., Soltis, P. S., and Doyle, J. J., eds. Boston, Dordrecht, London; Kluwer Academic Publishers pp. 541-556

T. Münster

Max-Planck-Institut für Züchtungsforschung
Abteilung Molekulare Pflanzengenetik

Carl-von-Linné-Weg 10
50829 Köln
Germany

Email: muenster@mpiz-koeln.mpg.de

Section Editor: F. Salamini

    >