Plant Biol (Stuttg) 2002; 4(4): 446-455
DOI: 10.1055/s-2002-34129
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Definition and Evaluation of the Spatio-Temporal Variations in Chlorophyll Fluorescence during the Phases of CAM and during Endogenous Rhythms in Continuous Light, in Thick Leaves of Kalanchoë daigremontiana [1]

T. Maddess 1 , U. Rascher 3,4 , K. Siebke 1,2 , U. Lüttge 3 , B. Osmond 4
  • 1 Visual Sciences Group, and
  • 2 Ecosystem Dynamics Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
  • 3 Institute for Botany, Darmstadt University of Technology, Schnittspahnstrasse 3 - 5, 64287 Darmstadt, Germany
  • 4 Biosphere 2 Center, Columbia University, Oracle, AZ 85623, USA
Further Information

Publication History

Received: April 9, 2002

Accepted: June 19, 2002

Publication Date:
18 September 2002 (online)

Abstract

We used chlorophyll fluorescence imaging to examine the homogeneity of photosynthetic metabolism during CAM in the thick leaves of Kalanchoë daigremontiana Hamet et Perrier de la Bâthie. Intense, persistent fluorescence from a DCMU treated thin leaf of Clematis sp placed beneath a K. daigremontiana leaf was readily detected through the thick leaf. Evidently reabsorption of fluorescence was qualitatively unimportant in the system used. Chlorophyll fluorescence images from 7 mm tissue discs excised from Kalanchoë leaves were collected at 60 s intervals during 20 min transients elicited by red excitation light. Information about patchiness and subsurface processes was gained by statistical factor analysis and Fourier transform. Although small, highly resolved rings of bright chlorophyll fluorescence surrounding discs of low fluorescence were observed from cells near the surface, no independent regional temporal variation in fluorescence was evident in the surface-biased images. Temporally independent chlorophyll fluorescence was present in images biased towards sub-epidermal sources, in most phases of CAM, and during endogenous rhythm. These asynchronous changes were several millimetres apart. This patchy fluorescence was confirmed when attached leaves were excited with blue light in a leaf chamber while CO2 and H2O exchange was monitored. Large spatio-temporal variations in the efficiency of photosystem II were always observed during phases II and IV of CAM, when both CO2 fixation cycles are active, and during the maximum rate of CO2 fixation during the endogenous rhythm in continuous light. These data are discussed in terms of metabolic isolation in the thick but uniform tissues in which gas diffusion may be largely confined to wet cell walls, thereby rendering the tissue functionally heterobaric. Prolonged, but in some instances, reversible alterations in PSII efficiency could be produced by injection of metabolic inhibitors, confirming that patchy fluorescence may reflect the differing energy costs of photosynthesis in different CAM phases.

Abbreviations

CAM: Crassulacean acid metabolism

DCDP: 3,3-dichloro-2-dihydroxyphosphinoyl-methyl-2-propenoate

DCMU: 3,4-dichlorophenyl-1,1-dimethylurea

DTT: 1,4-dithiothreitol

ML: maximum likelihood

NPQ: non-photochemical quenching

PC: principal components

PEPCase: phosphoenolpyruvate-carboxylase

Rubisco: ribulose-1,5-bisphosphate-carboxylase-oxygenase

ΦPSII: effective quantum efficiency of photosystem II

1 Dedicated to the memory of the late George G. Laties.

References

  • 01 Osmond,  C. B.. (1978);  Crassulacean acid metabolism: a curiosity in context.  Ann. Rev. Plant Physiol.. 29 379-414
  • 02 Winter,  K., and Smith,  J. A. C.. (1996) Crassulacean acid metabolism; biochemistry, ecophysiology and evolution. Ecological Studies, Vol. 114. Heidelberg; Springer Verlag
  • 03 Lüttge,  U., and Smith,  J. A. C.. (1984);  Mechanism of passive malic-acid efflux from vacuoles of the CAM plant Kalanchoë daigremontiana. .  J. Membrane Biol.. 81 149-158
  • 04 Nimmo,  H. G.. (2000);  The regulation of phosphoenolpyruvate-carboxylase in CAM plants.  Trends Plant Sci.. 5 75-80
  • 05 Lüttge,  U.. (2000);  The tonoplast functioning as the master switch for circadian regulation of crassulacean metabolism.  Planta. 211 761-769
  • 06 Terashima,  I.. (1992);  Anatomy of nonuniform leaf photosynthesis.  Photosynth. Res.. 31 195-212
  • 07 Haefner,  J. W.,, Buckler,  T. N.,, and Mott,  K. A.. (1997);  A spatially explicit model of patchy stomatal responses to humidity.  Plant Cell Environ.. 20 1087-1097
  • 08 Smith,  J. A. C.,, and Heuer,  S.. (1981);  Determination of the volume of intercellular spaces in leaves and some values for CAM plants.  Ann. Bot.. 48 915-917
  • 09 Maxwell,  K.,, von Caemmerer,  S.,, and Evans,  J. R.. (1997);  Is low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?.  Aus. J. Plant Physiol.. 24 777-786
  • 10 Beck,  F.,, Blasius,  B.,, Neff,  R.,, Lüttge,  U.,, and Rascher,  U.. (2001);  Stochastic noise interferes coherently with biological clocks and produces specific time structures.  Proc. R. Soc. Lond. B Biol. Sci.. 268 1307-1313
  • 11 Rascher,  U.,, Blasius,  B.,, Beck,  F.,, and Lüttge,  U.. (1998);  Temperature profiles for the expression of endogenous rhythmicity and arrhythmicity of CO2 exchange in the CAM plant Kalanchoë daigremontiana can be shifted by slow temperature changes.  Planta. 207 76-82
  • 12 Rascher,  U.,, Hütt,  M.-Th.,, Siebke,  K.,, Osmond,  B.,, and Lüttge,  U.. (2001);  Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators.  Proc. Natl. Acad. Sci. USA. 98 11801-11805
  • 13 Baker,  N. R.,, Oxborough,  K.,, Lawson,  T.,, and Morison,  J. I. L.. (2001);  High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.  J. Exp. Bot.. 52 615-621
  • 14 Chaerle,  L., and Van der Straeten,  D.. (2001);  Seeing is believing: imaging techniques to monitor plant health.  Biochem. Biophys. Acta. 1519 153-166
  • 15 Daley,  P. F.,, Raschke,  K.,, Ball,  J. T.,, and Berry,  J. A.. (1989);  Topography of photosynthetic activity in leaves obtained from video images of chlorophyll fluorescence.  Plant Physiol.. 90 1233-1238
  • 16 Genty,  B., and Meyer,  S.. (1995);  Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging.  Aus. J. Plant Physiol.. 22 277-284
  • 17 Siebke,  K., and Weis,  E.. (1995 a);  Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations.  Planta. 196 155-165
  • 18 Siebke,  K., and Weis,  E.. (1995 b);  Imaging of chlorophyll-a-fluorescence in leaves: topography of photosynthetic oscillations in leaves of Glechoma hederacea. .  Photosynth. Res.. 45 225-237
  • 19 Osmond,  C. B.,, Daley,  P. F.,, Badger,  M. R.,, and Lüttge,  U.. (1998);  Chlorophyll fluorescence quenching during photosynthetic induction in leaves of Abutilon striatum Dicks. infected with Abutilon mosaic virus, observed with a field-portable imaging system.  Bot. Acta. 111 390-397
  • 20 Pfündel,  E. E.. (1998);  Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence.  Photosynth. Res.. 56 185-195
  • 21 Vogelmann,  T. C., and Han,  T.. (2000);  Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles.  Plant Cell Environ.. 23 1303-1311
  • 22 Hütt,  M.-Th., and Neff,  R.. (2001);  Quantification of spatiotemporal phenomena by means of cellular automaton techniques.  Physica A.. 289 498-516
  • 23 Maddess,  T., and Kulikowski,  J.. (1999);  Apparent fineness of stationary compound gratings.  Vision Res.. 39 3404-3416
  • 24 Peterzell,  D. H., and Teller,  D. Y.. (1996);  Individual differences in contrast sensitivity functions: the lowest spatial frequency channels.  Vision Res.. 36 3077-3085
  • 25 Reyment,  R., and Jöreskog,  K. G.. (1996) Applied factor analysis in the natural sciences. Cambridge; Cambridge University Press
  • 26 Lüttge,  U., and Beck,  F.. (1992);  Endogenous rhythm and chaos in crassulacean acid metabolism.  Planta. 188 28-38
  • 27 Paillotin,  P.. (1976);  Movement of excitations in the photosynthesis domain of photosystem II.  J. theor. Biol.. 58 237-252
  • 28 Genty,  B.,, Briantis,  J. M.,, and Baker,  N. R.. (1989);  The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.  Biochim. Biophys. Acta. 180 302-319
  • 29 Schreiber,  U.,, Bilger,  W.,, and Neubauer,  C.. (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of photosynthesis. Schulze, E.-D. and Cadwell, M. M., eds. Berlin · Heidelberg · New York; Springer Verlag pp. 49-70
  • 30 Bracewell,  R. N.. (1986) The Fourier transform and its applications. New York; McGraw-Hill
  • 31 Maddess,  T.,, Hemmi,  J.,, and James,  A. C.. (1998);  Evidence for spatial aliasing effects in the Y-like cells of the magnocellular visual pathway.  Vision Res.. 38 1843-1859
  • 32 Yellott,  J. I.. (1982);  Spectral analysis of spatial sampling by photoreceptors: topological order prevents aliasing.  Vision Res.. 22 1205-1210
  • 33 Jenkins,  C. L. D.. (1988);  Effects of the phosphoenolpyruvate-carboxylase inhibitor 3,3-dichloro-2-(dihydroxyphospinoylmethyl) propenoate on photosynthesis: C4 selectivity and studies on C4 photosynthesis.  Plant Physiol.. 89 1231-1237
  • 34 Buchanan-Bollig,  I. C.,, Fischer,  A.,, and Kluge,  M.. (1984);  Circadian rhythms in Kalanchoë: the pathway of 14CO2 fixation in prolonged light.  Planta. 161 71-80
  • 35 Grams,  T. E. E.,, Borland,  A. M.,, Roberts,  A.,, Griffiths,  H.,, Beck,  F.,, and Lüttge,  U.. (1997);  On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes.  Plant Physiol.. 113 1309-1317
  • 36 Kluge,  M.,, Böhlke,  C.,, and Queiroz,  O.. (1981);  Crassulacean acid metabolism (CAM) in K. daigremontiana. Changes in intercellular CO2 concentration during a normal CAM cycle and during cycles in continuous light or darkness.  Planta. 152 87-92

1 Dedicated to the memory of the late George G. Laties.

B. Osmond

Biosphere 2 Center
Columbia University

PO Box 689
Oracle, AZ 85623
USA

Email: osmond@bio2.columbia.edu

Section Editor: H. Rennenberg

    >