Plant Biol (Stuttg) 2002; 4(4): 423-431
DOI: 10.1055/s-2002-34125
Acute View
Georg Thieme Verlag Stuttgart ·New York

Is Protein Import into Plastids with Four-Membrane Envelopes Dependent on Two Toc Systems Operating in Tandem?

A. Bodył
  • Department of Systematic Zoology and Zoogeography, Zoological Institute, University of Wrocław, Wrocław, Poland
Weitere Informationen

Publikationsverlauf

Received: July 8, 2001

Accepted: May 7, 2002

Publikationsdatum:
18. September 2002 (online)

Abstract

Plastids with four-membrane envelopes have evolved by several independent endosymbioses involving a eukaryotic alga as the endosymbiont and a protozoan predator as the host. It is assumed that their outermost membrane is derived from the phagosomal membrane of the host and that protein targeting to and across this membrane proceeds co-translationally, including ER and the Golgi apparatus (e.g., chlorarachniophytes) or only ER (e.g., heterokonts). Since the two inner membranes (or the plastid envelope) of such a complex plastid are derived from the endosymbiont plastid, they are probably provided with Toc and Tic systems, enabling post-translational passage of the imported proteins into the stroma. The third envelope membrane, or the periplastid one, originates from the endosymbiont plasmalemma, but what import apparatus operates in it remains enigmatic. Recently, Cavalier-Smith (1999[5]) has proposed that the Toc system, pre-existing in the endosymbiont plastid, has been relocated to the periplastid membrane, and that plastids having four envelope membranes contain two Toc systems operating in tandem and requiring the same targeting sequence, i.e., the transit peptide. Although this model is parsimonious, it encounters several serious obstacles, the most serious one resulting from the complex biogenesis of Toc75 which forms a translocation pore. In contrast to most proteins targeted to the outer membrane of the plastid envelope, this protein carries a complex transit peptide, indicating that a successful integration of the Toc system into the periplastid membrane would have to be accompanied by relocation of the stromal processing peptidase to the endosymbiont cytosol. However, such a relocation would be catastrophic because this enzyme would cleave the transit peptide off all plastid-destined proteins, thus disabling biogenesis of the plastid compartment. Considering these difficulties, I suggest that in periplastid membranes two Toc-independent translocation apparatuses have evolved: a porin-like channel in chlorarachniophytes and cryptophytes, and a vesicular pathway in heterokonts and haptophytes. Since simultaneous evolution of a new transport system in the periplastid membrane and in the phagosomal one would be complicated, it is argued that plastids with four-membrane envelopes have evolved by replacement of plastids with three-membrane envelopes. I suggest that during the first round of secondary endosymbioses (resulting in plastids surrounded by three membranes), myzocytotically-engulfed eukaryotic alga developed a Golgi-mediated targeting pathway which was added to the Toc/Tic-based apparatus of the endosymbiont plastid. During the second round of secondary endosymbioses (resulting in plastids surrounded by four membranes), phagocytotically-engulfed eukaryotic alga exploited the Golgi pathway of the original plastid, and a new translocation system had to originate only in the periplastid membrane, although its emergence probably resulted in modification of the import machinery pre-existing in the endosymbiont plastid.

References

  • 1 Bodył,  A.. (1997);  Mechanism of protein targeting to the chlorarachniophyte plastids and the evolution of complex plastids with four membranes - a hypothesis.  Botanica Acta. 110 395-400
  • 2 Bölter,  B., and Soll,  J.. (2001);  Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates?.  EMBO Journal. 20 1-6
  • 3 Cavalier-Smith,  T.. (1982);  The origins of plastids.  Biological Journal of the Linnean Society. 17 289-306
  • 4 Cavalier-Smith,  T. . (1989) The kingdom Chromista. The chromophyte algae: problems and perspectives. Green, J.C., Leadbeater, B.S.C., and Diver, W.L., eds. Oxford; Clarendon Press pp 381-407
  • 5 Cavalier-Smith,  T.. (1999);  Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree.  Journal of Eukaryotic Microbiology. 46 347-366
  • 6 Cavalier-Smith,  T.. (2000);  Membrane heredity and early chloroplast evolution.  Trends in Plant Science. 5 174-182
  • 7 Chen,  K.,, Chen,  X.,, and Schnell,  D. J.. (2000);  Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts.  Plant Physiology. 122 813-822
  • 8 Douglas,  S.,, Zauner,  S.,, Fraunholz,  M.,, Beaton,  M.,, Penny,  S.,, Deng,  L.-T.,, Wu,  X.,, Reith,  M.,, Cavalier-Smith,  T.,, and Maier,  U.-G.. (2001);  The highly reduced genome of an enslaved algal nucleus.  Nature. 410 1091-1096
  • 9 Gibbs,  S. P.. (1978);  The chloroplasts of Euglena may have evolved from symbiotic green algae.   Canadian Journal of Botany. 56 2883-2889
  • 10 Gibbs,  S. P.. (1979);  The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER.  Journal of Cell Science. 35 253-266
  • 11 Gibbs,  S. P.. (1981);  The chloroplast endoplasmic reticulum: structure, function, and evolutionary significance.  International Review of Cytology. 72 49-99
  • 12 Gilkey,  J. C., and Staehelin,  L. A.. (1986);  Advances in ultrarapid freezing for the preservation of cellular ultrastructure.  Journal of Electron Microscopic Techniques. 3 177-210
  • 13 Häuber,  M. M.,, Müller,  S. B.,, Speth,  V.,, and Maier,  U.-G.. (1994);  How to evolve a complex plastid? - A hypothesis.  Botanica Acta. 107 383-386
  • 14 Hinnah,  S. C.,, Hill,  K.,, Wagner,  R.,, Schlicher,  T.,, and Soll,  J.. (1997);  Reconstitution of a chloroplast protein import channel.  EMBO Journal. 16 7351-7360
  • 15 Hofmann,  C. J. B.,, Rensing,  S. A.,, Häuber,  M. M.,, Martin,  W. F.,, Müller,  S. B.,, Couch,  J.,, Mc Fadden,  G. I.,, Igloi,  G. L.,, and Maier,  U.-G.. (1994);  The smallest known eukaryotic genomes encode a protein gene: towards an understanding of nucleomorph functions.  Molecular and General Genetics. 243 600-604
  • 16 Ishida,  K.,, Green,  B. R.,, and Cavalier-Smith,  T.. (1999);  Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small subunit rRNA genes.  Molecular Biology and Evolution. 16 321-331
  • 17 Jarvis,  P., and Soll,  J.. (2001);  Toc, Tic, and chloroplast protein import.  Biochimica et Biophysica Acta. 1541 64-79
  • 18 Lang,  M.,, Apt,  K. E.,, and Kroth,  P. G.. (1998);  Protein transport in “complex” diatom plastids utilizes two different targeting domains.  Journal of Biological Chemistry. 273 30973-30978
  • 19 Low,  P. S., and Chandra,  S.. (1994);  Endocytosis in plants.  Annual Review in Plant Physiology and Plant Molecular Biology. 45 609-631
  • 20 Ma,  Y.,, Kouranow,  A.,, LaSala,  S. E.,, and Schnell,  D. J.. (1996);  Two components of the chloroplast protein import apparatus, IAP86 and IAP 75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope.  Journal of Cell Biology. 134 315-327
  • 21 Martin,  W., and Herrmann,  R. G.. (1998);  Gene transfer from organelles to the nucleus: how much, what happens, and why?.  Plant Physiology. 118 9-17
  • 22 Matern,  H. T.,, Yeaman,  C.,, Nelson,  W. J.,, and Scheller,  R. H.. (2001);  The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells.  Proceedings of the National Academy of Sciences USA. 98 9648-9653
  • 23 Mayer,  A.. (2001);  What drives membrane fusion in eukaryotes?.  Trends in Biochemical Sciences. 26 717-723
  • 24 McFadden,  G. I., and Gilson,  P.. (1995);  Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis.  Trends in Ecology and Evolution. 10 12-17
  • 25 Neuhaus,  H. E., and Wagner,  R.. (2000);  Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids.  Biochimica et Biophysica Acta. 1465 307-323
  • 26 Oliveira,  M. C., and Bhattacharya,  D.. (2000);  Phylogeny of the Bangiophycidae (Rodophyta) and the secondary endosymbiotic origin of algal plastids.  American Journal of Botany. 87 482-492
  • 27 Park,  H.,, Eggink,  L. L.,, Roberson,  R. W.,, and Hoober,  J. K.. (1999);  Transfer of proteins from the chloroplast to vacuoles in Chlamydomonas reinhardtii (Chlorophyta): a pathway for degradation.  Journal of Phycology. 35 528-538
  • 28 Reumann,  S., and Keegstra,  K.. (1999);  The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes.  Trends in Plant Science. 4 302-307
  • 29 Schleiff,  E., and Klösgen,  R. B.. (2001);  Without a little help from “my” friends: direct insertion of proteins into chloroplast membranes?.  Biochimica et Biophysica Acta . 1541 22-33
  • 30 Schnepf,  E., and Elbrächter,  M.. (1992);  Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects.  European Journal of Protistology. 28 3-24
  • 31 Sharples,  F. P.,, Wrench,  P. M.,, Ou,  K. L.,, and Hiller,  R. G.. (1996);  Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae. .  Biochimica et Biophysica Acta . 1276 117-123
  • 32 Staehelin,  L. A.,, Giddings Jr.,  T. H.,, Kiss,  J. Z.,, and Sack,  F. D.. (1990);  Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples.  Protoplasma. 157 75-91
  • 33 Sulli,  C., and Schwartzbach,  S. D.. (1995);  The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing.  Journal of Biological Chemistry. 270 13084-13090
  • 34 Sulli,  C., and Schwartzbach,  S. D.. (1996);  A soluble protein is imported into Euglena chloroplasts as a membrane-bound precursor.  The Plant Cell . 8 43-53
  • 35 Tranel,  P. J.,, Froehlich,  J.,, Goyal,  A.,, and Keegstra,  K.. (1995);  A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway.  EMBO Journal. 14 2436-2446
  • 36 Tranel,  P. J., and Keegstra,  K.. (1996);  A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope.  The Plant Cell. 8 2093-2104
  • 37 Triemer,  R. E.. (1997);  Feeding in Peranema trichophorum revisited (Euglenophyta).  Journal of Phycology. 33 649-654
  • 38 Turmel,  M.,, Otis,  C.,, and Lemieux,  C.. (1999);  The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes.  Proceedings of the National Academy of Sciences USA. 96 10248-10253
  • 39 van Dooren,  G. G.,, Schwartzbach,  S. D.,, Osafune,  T.,, and McFadden,  G. I.. (2001);  Translocations of proteins across the multiple membranes of complex plastids.  Biochimica et Biophysica Acta. 1541 34-53
  • 40 Wastl,  J., and Maier,  U.-G.. (2000);  Transport of proteins into cryptomonads complex plastids.  Journal of Biological Chemistry. 275 23194-23198
  • 41 Zhang,  Z.,, Green,  B. R.,, and Cavalier-Smith,  T.. (2000);  Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids.  Journal of Molecular Evolution. 51 26-40

A. Bodył

Department of Systematic Zoology and Zoogeography
Zoological Institute
University of Wrocław

ul. Sienkiewicza 21
50-335 Wrocław
Poland

eMail: bodyl@biol.uni.wroc.pl

Section Editor: A. M. C. Emons

    >