Rofo 2002; 174(7): 819-829
DOI: 10.1055/s-2002-32689
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Anwendung von Kontrastmitteln für die kardiale Magnetresonanztomographie

MR contrast media for cardiovascular imagingG.  A.  Krombach1 2 , C.  B.  Higgins1 , R.  W.  Günther2 , T.  Kühne1 , M.  Saeed1
  • 1Department of Radiology, University of California, San Francisco, California, USA
  • 2Klinik für Radiologische Diagnostik, Universitätsklinikum der RWTH Aachen, Aachen, Deutschland
Further Information

Publication History

Publication Date:
08 July 2002 (online)

Zusammenfassung

MR Kontrastmittel können die diagnostische Aussagekraft der MRT verbessern und werden erfolgreich zur Differenzierung von vitalem und nekrotischem Myokard, transmuralem und nicht-transmuralem Infarkt, reperfundiertem und nicht-reperfundiertem Infarkt sowie für myokardiale Perfusionsmessungen eingesetzt. Derzeit sind klinische Studien nahezu ausschließlich auf die Anwendung extrazellulärer Kontrastmittel beschränkt (z. B. Gd-DTPA, Gd-DTPA-BMA, Gd-BOPTA, Gd-D03A). Die Differenzierung und Charakterisierung ischämisch geschädigten Myokards mittels exogener Substanzen wie intravaskulärer, nekroseaffiner und intrazellulärer Kontrastmittel oder die Nutzung endogener Substrate als Kontrastgeber konnte jedoch in experimentellen Untersuchungen gezeigt werden. Intravaskuläre Kontrastmittel (z. B. MS-325 oder Eisenpartikel) erlauben die Untersuchung der Integrität des Kapillarsystems sowie die MR-Angiographie. Nekroseaffine Kontrastmittel (z. B. Gadophrin) wurden zur selektiven Darstellung infarzierten Gewebes eingesetzt. Intrazelluläre Kontrastmittel (z. B. Mn-DPDP) ermöglichen die Darstellung vitalen Myokards. Endogene Substanzen (z. B. Deoxyhämoglobin, Na+ oder K+) wurden zur Darstellung der veränderten Ionenhomöostase und für Perfusionsmessungen in ischämisch geschädigtem Myokard erprobt.

Abstract

MR contrast media improve the diagnostic capability of MRI and MRA. They are used in the discrimination of viable and non-viable myocardium, transmural and non-transmural infarction, occlusive and reperfused infarction and for measurement of myocardial perfusion. Currently, clinical studies are almost completely restricted to the use of extracellular non-specific MR contrast media (i. e., Gd-DTPA, Gd-DTPA,-BMA, Gd-BOPTA, Gd-D03A). However, the feasibility of using intravascular, necrosis specific or intracellular MR contrast media or endogeneous substrates as specific MR contrast media in cardiovascular imaging has been demonstrated in experimental and a few clinical studies. Intravascular contrast media (i. e., MS-325 or NC100150 Injection) allow assessment of microvascular integrity and performance of MR angiography. Necrosis specific contrast media (i. e., Gadophrin-2) have been used for sizing the extent of infarcted myocardium while intracellular contrast media (i. e., Mn-DPDP) delineate viable myocardium. Endogenous contrast media (i. e., Deoxyhemoglobin, Na+ or K+) have been tested for detecting the alterations in concentrations of these ions in infarcted myocardium and for perfusion measurements. Furthermore, intravascular MR contrast media may be useful for MRA and MRI guided cardiovascular interventions.

Literatur

  • 1 Matheijssen N A, Louwerenburg H W, Van Rugge F P, Arens R P, Kauer B, de Roos A, van der Wall E E. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting.  Magn Reson Med. 1996;  35 221-228
  • 2 Saeed M, Wendland M F, Lauerma K, Sakuma H, Chew W, Derugin N, Higgins C B. First-pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging studies: detection of acute myocardial ischemia.  J Magn Reson Imaging. 1995;  5 515-523
  • 3 Wendland M F, Saeed M, Masui T, Derugin N, Higgins C B. First pass of a MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging.  J Magn Reson Imaging. 1993;  3 755-760
  • 4 Van der Wall E E, van Dijkman P R, de Roos A, Doornbos J, van der Laarse A, Manger Cats V, van Voorthuisen A E, Matheijssen N A, Bruschke A V. Diagnostic significance of Gd-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.  Br Heart J. 1990;  63 12-17
  • 5 Saeed M, Watzinger N, Krombach G A, Lund G K, Wendland M F, Chujo M, Higgins C B. Sequential MRI of post-infarcted left ventricular remodeling: value of nicorandil therapy in rat model.  Radiology. 2002;  im Druck
  • 6 Wagenseil J, Johansson L OM, Lorenz C H. Characterization of T1-Relaxation and blood-myocardial contrast enhancement of NC100150 Injection in cardiac MRI.  J Magn Reson Imaging. 1999;  10 784-789
  • 7 Gallez B, Bacic G, Swartz H M. Evidence for the dissociation of the hepatobiliary MRI contrast agent Mn-DPDP.  Magn Reson med. 1996;  35 14-19
  • 8 Bemerich J, Saeed M, Arheden H, Higgins C B, Wendland M F. Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model.  Radiology. 2000;  216 524-530
  • 9 Arheden H, Saeed M, Higgins C B, Gao D W, Bremerich J, Wyttenbach R, Dae M W, Wendland M F. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify moycardial infarction: comparison with 99mTc-DTPA autoradiography in rats.  Radiology. 1999;  211 698-708
  • 10 Dendale P, Franken P R, Meusel M, van der Geest R, de Roos A. Distinction between open and occluded infarct-related arteries using contrast-enhanced magnetic resonance imaging.  Am J Cardiol. 1997;  80 334-336
  • 11 Aukland K, Reed R K. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume.  Physiol Rev. 1993;  71 1-78
  • 12 Saeed M, Higgins C B, Geschwind J F, Wendland M F. T1-relaxation kinetics of extracellular, intracellular, and intravascular MR contrast agentsin normal and acutely reperfused infarcted myocardium using echoplanar MR imaging.  Eur Radiol. 2000;  10 310-318
  • 13 Diesbourg L D, Prato F S, Wisenberg G, Drost D J, Marshall T P, Carroll S E, O'Neill B. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease.  Magn Reson Med. 1992;  23 239-253
  • 14 Tong C Y, Prato F S, Wiesenberg G, Lee T Y, Carroll E, Sander D, Wills J, Drost D. Measurements of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium.  Magn Reson Med. 1993;  30 337-346
  • 15 Flacke S, Fischer S E, Lorenz C H. Measurement of the gadopentate dimeglumine partition coefficient in human myocardium in vivo: normal distribution and evaluation in acute and chronic infarction.  Radiology. 2001;  218 703-710
  • 16 Arheden H, Saeed M, Higgins C B, Gao D W, Ursell P C, Bremerich J, Wyttenbach R, Dae M W, Wendland M F. Reperfused rat myocardium subjected to various durations of ischemia: Estimation of the distribution volume of contrast material with echoplanar MR imaging.  Radiology. 2000;  275 520-528
  • 17 Saeed M, Lund G, Wendland M F, Bremerich J, Weinmann H J, Higgins C B. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media.  Circulation. 2001;  103 871-876
  • 18 Pislaru S V, Ni Y, Pislaru C, Bosmans H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marchal G, Van de Werf F J. Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent.  Circulation. 1999;  99 690-696
  • 19 Rogers W J, Kramer C M, Geskin G, Hu Y L, Theobald T M, Vido D A, Petruolo S, Reichek N. Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction.  Circulation. 1999;  99 744-750
  • 20 Sandstede J JW, Pabst T, Beer M, Lipke C, Bäurle K, Butter F, Harre K, Kenn W, Voelker W, Neubauer S, Hahn D. Assessment of myocardial infarction in humans with 23Na MR imaging: comparison with CINE MR imaging and delayed contrast enhancement.  Radiology. 2001;  221 222-228
  • 21 Oshinski J N, Yang Z, Jones J R, Mata J F, French B A. Imaging time after Gd-DTPA Injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging.  Circulation. 2001;  104 2838-2842
  • 22 Kim R J, Fieno D S, Parrish T B, Harris K, Chen E L, Simonetti O, Bundy J, Finn P, Klocke F J, Judd R M. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function.  Circulation. 1999;  100 1992-2002
  • 23 Choi K M, Kim R J, Gubernikoff G, Vargas B S, Parker M, Judd R M. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function.  Circulation. 2001;  104 1101-1107
  • 24 Saeed M, Wendland M F, Masui T, Higgins C B. Reperfused myocardial infarctions on T1- and susceptibility-enhanced MRI: evidence for loss of compartimentalization of contrast media.  Magn Reson Med. 1994;  31 31-39
  • 25 Thornhill R E, Prato F S, Pereira R S, Wisenberg G, Sykes J. Examining a canine model of stunned myocardium with Gd-DTPA-enhanced MRI.  Magn Reson Med. 2001;  45 864-871
  • 26 Manning W J, Atkinson D J, Grossman W, Paulin S, Edelman R R. First-pass nuclear magnetic resonance imaging studies using Gadolinium-DTPA in patients with coronary artery disease.  J Am Coll Cardiol. 1991;  18 959-965
  • 27 Ochiai K, Shimada T, Murakami Y. Hemorrhagic myocardial infarction after coronary reperfusion detected in vivo by magnetic resonance imaging in humans: prevalence and clinical implications.  J Cardiovasc Magn Reson. 1999;  1 247-256
  • 28 Wilke N, Jerosch-Herold M, Zenovich A, Stillman A E. Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications.  J Magn Reson Imaging. 1999;  10 676-685
  • 29 Saeed M, Wendland M F, Yu K K, Lauerma K, Li H T, Derugin N, Cavagna F M, Higgins C B. Identification of myocardial reperfusion with echo-planar magnetic resonance imaging: discrimination between occlusive and reperfused infarctions.  Circulation. 1994;  90 1492-1501
  • 30 Judd R M, Lugo-Olivieri C H, Arai M, Kondo T, Croisille P, Lima J A, Mohan V, Becker L C, Zerhouni E A. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-days-old reperfused canine infarcts.  Circulation. 1995;  92 1902-1910
  • 31 Rochitte C E, Lima J A, Blumcke D A, Reeder S B, McVeigh E R, Furuta T, Becker L C, Melin J A. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction.  Circulation. 1998;  98 1006-1014
  • 32 Weissleder R, Lee A S, Khaw B A, Shen T, Brady T J. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarction: MR antibody imaging.  Radiology. 1992;  182 381-385
  • 33 Marchal G, Ni Y, Herijgers P, Flameng W, Petré C, Bosmans H, Yu J, Ebert W, Pfefferer D, Semmler W, Baert A L. Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI.  Eur Radiol. 1996;  6 2-8
  • 34 Saeed M, Bremerich J, Wendland M F, Wyttenbach R, Weinmann H J, Higgins C B. Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats.  Radiology. 1999;  213 247-257
  • 35 Lund G, Higgins C B, Wendland M F, Watzinger N, Weinmann H J, Saeed M. Assessment of nicorandil therapy in ischemic myocardial injury.  Radiology. 2001;  221 676-682
  • 36 Brurok H, Schjott J, Berg K, Karlsson J O, Jynge P. Effects of Mn-DPDP, DPDP- and MnCl2 on cardiac energy metabolism and manganese accumulation. An experimental study in the isolated perfused rat heart.  Invest Radiol. 1997;  32 205-211
  • 37 Krombach G A, Saeed M, Novikov V, Higgins C B, Wendland M F. Delineation of cellular uptake of manganese with MRI for differentiation of stunned and normal myocardium.  Radiology. 2001;  221 (P) 586
  • 38 Rochitte C E, Kim R J, Hillenbrand H B, Chen E L, Lima J A. Microvascular integrity and the time course of myocardial sodium accumulation after acute infarction.  Circ Res. 2000;  87 648-655
  • 39 Kim R J, Lima J A, Chen E L, Reeder S B, Klocke F J, Zerhouni E A, Judd R M. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction.  Circulation. 1997;  95 1877-1885
  • 40 Fieno D S, Kim R J, Rehwald W G, Judd R M. Physiological basis for potassium (39K) magnetic resonance imaging of the heart.  Circ Res. 1999;  84 913-920
  • 41 Li D, Dhawale P, Rubin P J, Haacke E M, Gropler R J. Myocardial signal response to dipyridamole and dobutamine: demonstration of the BOLD effect using a double-echo gradient-echo sequence.  Magn Reson Med. 1996;  36 16-20
  • 42 Wacker C M, Bock M, Hartlep A W, Bauer W R, van Kaick G, Pfleger S, Ertl G, Schad L R. BOLD-MRI in ten patients with coronary artery disease: evidence for imaging of capillary recruitment in myocardium supplied by the stenotic artery.  Magma. 1999;  8 48-54
  • 43 Bache G M, Herzka D A, Boxerman J L, Post W S, Gupta S N, Faranesh A Z, Solaiyappan M, Bottomley P A, Weiss J L, Shapiro E P, Hill M N. Attenuated myocardial vasodilatator response in patients with hypertensive hypertrophy revealed by oxygenation-dependent magnetic resonance imaging.  Circulation. 2001;  104 1214-1217
  • 44 Waller C, Hiller K H, Voll S, Haase A, Ertl G, Bauer W R. Myocardial perfusion imaging using a non-contrast MR imaging technique.  Int J Card Imaging. 2001;  17 123-132
  • 45 Williams D S, Detre J A, Leigh J S, Koretsky A P. Magnetic resonance imaging of perfusion using spin inversion of arterial water.  Proc Natl Acad Sci USA. 1992;  89 212-216
  • 46 Asanuma T, Tanabe K, Ochiai K, Yoshitomi H, Nakamura K, Murakami Y, Sano K, Shimada T, Murakami R, Morioka S, Beppu S. Relationship between progressive microvascular damage and intramyocardial hemorrhage in patients with reperfused anterior myocardial infarction: myocardial contrast echocardiographic study.  Circulation. 1997;  96 448-458
  • 47 Gerber B L, Rochitte C E, Melin J A, McVeigh E R, Bluemke D A, Wu K C, Lima J A. Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction.  Circulation. 2000;  101 2734-2741
  • 48 Bremerich J, Wendland M F, Arheden H, Wyttenbach R, Gao D W, Huberty J P, Dae M W, Higgins C B, Saeed M. Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging.  J Am Coll Cardiol. 1998;  32 787-793
  • 49 Wu K C, Kim R J, Blumke D A, Rochitte C E, Zerhouni E A, Becker L C, Lima J A. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion.  J Am Coll Cardiol. 1998;  32 1756-1764
  • 50 Bücker A, Adam G, Neuerburg J, Glowinski A, Tacke J, Günther R W. Interventionelle Magnetresonanztomographie.  Fortschr Röntgenstr. 2000;  173 105-111
  • 51 Bücker A, Adam G, Neuerburg J, Schürmann K, Rasche V, Molgaard-Nielsen A, Günther R W. Echtzeit-MR mit radialer k-Raumabtastung zur Überwachung angiographischer Interventionen.  Fortschr Röntgenstr. 1998;  169 542-546
  • 52 Bücker A, Neuerburg J M, Adam G B, Glowinski A, Schaefftler T, Rasche V, van Valls J J, Günther R W. Real-time MR guidance for inferior vena cava filter placement in an animal model.  J Vascul Intervent Radiol. 2001;  12 753-756
  • 53 Bücker A, Neuerburg J M, Adam G B, Glowinski A, Schaefftler T, Rasche V, van Vaals J J, Molgaard-Nielsen A, Günther R W. Real-time MR fluoroscopy for MR-guided iliac artery stent placement.  J Magn Reson Imaging. 2000;  12 616-622
  • 54 Manke C, Nitz W R, Djavidani B, Strotzer M, Lenhart M, Välk M, Feuerbach S, Link J. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study.  Radiology. 2001;  219 527-534
  • 55 Serfaty J M, Yang X, Aksit P, Quick H H, Solaiyappan M, Atalar E. Toward MRI-guided coronary catheterization: visualization of guiding catheters, guidewires, and anatomy in real time.  J Magn Reson Imaging. 2000;  12 590-594
  • 56 Spuentrup E, Ruebben A, Schaeffter T, Manning W J, Günther R W, Buecker A. Magnetic resonance-guided coronary artery stent placement in a swine model.  Circulation. 2002;  105 874-879
  • 57 Bakker C JG, Bos C, Weinmann H J. Passive tracking of catheters and guidewires by contrast-enhanced MR fluoroscopy.  Magn Reson Med. 2001;  45 18-23
  • 58 Mardor Y, Barbash I M, Feinberg M, Tessone A, Aboulafia-Etzion S, Orenstein A, Ruiz-Cabello J, Cohen J S, Leor J. Interventional MRI for monitoring changes in morphology of rat heart following myocardial infarction and assessing guided percutaneous therapy.  Proc Intl Soc Mag Reson Med. 2001;  9 1909

Maythem Saeed, DVM, PhD

Department of Radiology, University of California, San Francisco

505 Parnassus Avenue, L 308

San Francisco, CA 94143-0628

USA

Phone: + 1-415-476-0439

Fax: + 1-415-476-0616

Email: Maythem.Saeed@radiology.ucsf.edu

    >