Semin Vasc Med 2002; 2(2): 175-190
DOI: 10.1055/s-2002-32041
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Glycation, Carbonyl Stress, EAGLEs, and the Vascular Complications of Diabetes

Timothy J. Lyons
  • Division of Endocrinology, Diabetes and Medical Genetics, Medical University of South Carolina, Charleston, SC
Further Information

Publication History

Publication Date:
06 June 2002 (online)

ABSTRACT

The association between poor metabolic control and the microvascular complications of diabetes is now well established, but the relationship between long-term metabolic control and the accelerated atherosclerosis of diabetes is as yet poorly defined. Hyperglycemia is the standard benchmark by which metabolic control is assessed. One mechanism by which elevated glucose levels may mediate vascular injury is through early and advanced glycation reactions affecting a wide variety of target molecules. The ``glycation hypothesis'' has developed over the past 30 years, evolving gradually into a ``carbonyl stress hypothesis'' and taking into account not only the modification of proteins by glucose, but also the roles of oxidative stress, a wide range of reactive carbonyl-containing intermediates (derived not only from glucose but also from lipids), and a variety of extra- and intracellular target molecules. The final products of these reactions may now be termed ``Either Advanced Glycation or Lipoxidation End-Products'' or ``EAGLEs.'' The ubiquity of carbonyl stress within the body, the complexity of the reactions involved, the variety of potential carbonyl intermediates and target molecules and their differing half-lives, and the slow development of the complications of diabetes all pose major challenges in dissecting the significance of these processes. The extent of the reactions tends to correlate with overall metabolic control, creating pitfalls in the interpretation of associative data. Many animal and cell culture studies, while supporting the hypothesis, must be viewed with caution in terms of relevance to human diabetes. In this article, the development of the carbonyl stress hypothesis is reviewed, and implications for present and future treatments to prevent complications are discussed.

REFERENCES

  • 1 Maillard L. Action des acides amines sur les sucres: formation des melanoidines par voie methodique.  Comptes Rendus Acad Sci (Paris) . 1912;  154 66-68
  • 2 Rajbar S. An abnormal hemoglobin in red cells of diabetics.  Clin Chim Acta . 1968;  22 296-298
  • 3 Bookchin R M, Gallop P M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group.  Biochem Biophys Res Commun . 1968;  32 86-93
  • 4 Bunn H F, Haney D N, Kamin S, Gabbay K H, Gallop P M. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo.  J Clin Invest . 1976;  57 1652-1659
  • 5 The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.  N Engl J Med . 1993;  329 977-986
  • 6 Stevens V J, Rouzer C A, Monnier V M, Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins.  Proc Natl Acad Sci USA . 1978;  75 2918-2922
  • 7 Rosenberg H, Modrak J B, Hassing J M, Al-Turk W A, Stohs S J. Glycosylated collagen.  Biochem Biophys Res Commun . 1979;  91 498-501
  • 8 Kennedy L, Baynes J W. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview.  Diabetologia . 1984;  26 93-98
  • 9 Thorpe S, Lyons T J, Baynes J W. Glycation and glycoxidation in diabetic vascular disease. In: Keaney J, ed. Oxidative Stress and Vascular Injury Boston: Kluwer Academic Publishers 2000: 259-283
  • 10 Clements R. The role of abnormal polyol metabolism in diabetic complications. In: Brodoff B, Bleicher, SJ, eds. Diabetes Mellitus and Obesity Baltimore: Williams Wilkins 1982: 117-128
  • 11 Thornalley P J. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy.  Gen Pharmacol . 1996;  27 565-573
  • 12 Fu M X, Requena J R, Jenkins A J, Lyons T J, Baynes J W, Thorpe S R. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions.  J Biol Chem . 1996;  271 9982-9986
  • 13 Baynes J W, Thorpe S R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.  Diabetes . 1999;  48 1-9
  • 14 Baynes J W. Role of oxidative stress in development of complications in diabetes.  Diabetes . 1991;  40 405-412
  • 15 Dyer D G, Blackledge J A, Katz B M. The Maillard reaction in vivo.  Z Ernahrungswiss . 1991;  30 29-45
  • 16 Lyons T J. Glycation and diabetic complications. In: Robbins DC, Leslie RDG, ed. Diabetes: Clinical Science and Practice New York: Cambridge University Press 1995: 288-312
  • 17 Dyer D G, Dunn J A, Thorpe S R. Accumulation of Maillard reaction products in skin collagen in diabetes and aging.  J Clin Invest . 1993;  91 2463-2469
  • 18 McCance D R, Dyer D G, Dunn J A. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus.  J Clin Invest . 1993;  91 2470-2478
  • 19 Wells-Knecht M C, Lyons T J, McCance D R, Thorpe S R, Baynes J W. Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes.  J Clin Invest . 1997;  100 839-846
  • 20 Lyons T J, Jenkins A J. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis.  Diabetes Reviews . 1997;  5 365-391
  • 21 Requena J R, Fu M X, Ahmed M U, Jenkins A J, Lyons T J, Thorpe S R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions.  Nephrol Dial Transplant . 1996;  11 48-53
  • 22 Fountain W C, Requena J R, Jenkins A J. Quantification of N-(glucitol)ethanolamine and N-(carboxymethyl)serine: two products of nonenzymatic modification of aminophospholipids formed in vivo.  Anal Biochem . 1999;  272 48-55
  • 23 Bucala R, Model P, Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression.  Proc Natl Acad Sci USA . 1984;  81 105-109
  • 24 Wells-Knecht K J, Zyzak D V, Litchfield J E, Thorpe S R, Baynes J W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.  Biochemistry . 1995;  34 3702-3709
  • 25 Vlassara H, Brownlee M, Cerami A. Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation end products.  J Exp Med . 1984;  160 197-207
  • 26 Ahmed M U, Thorpe S R, Baynes J W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein.  J Biol Chem . 1986;  261 4889-4894
  • 27 Sell D R, Monnier V M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process.  J Biol Chem . 1989;  264 21597-21602
  • 28 Sell D R, Monnier V M. End stage renal disease and diabetes catalyze the formation of a pentose-derived cross link from aging human collagen.  J Clin Invest . 1990;  85 380-385
  • 29 Suzuki D, Miyata T. Carbonyl stress in the pathogenesis of diabetic nephropathy.  Intern Med . 1999;  38 309-314
  • 30 Baynes J W. From life to death-the struggle between chemistry and biology during aging: the Maillard reaction as an amplifier of genomic damage.  Biogerontology . 2000;  1 235-246
  • 31 Zyzak D V, Richardson J M, Thorpe S R, Baynes J W. Formation of reactive intermediates from Amadori compounds under physiological conditions.  Arch Biochem Biophys . 1995;  316 547-554
  • 32 Wolff S P, Bascal Z A, Hunt J V. ``Autoxidative glycosylation'': free radicals and glycation theory.  Prog Clin Biol Res . 1989;  304 259-275
  • 33 Niwa T, Takeda N, Yoshizumi H. Presence of 3-deoxyglucosone, a potent protein cross-linking intermediate of Maillard reaction, in diabetic serum.  Biochem Biophys Res Commun . 1993;  196 837-843
  • 34 Beisswenger P J, Howell S K, O'Dell R M, Wood M E, Touchette A D, Szwergold B S. Alpha-dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia.  Diabetes Care . 2001;  24 726-732
  • 35 Lal S, Kappler F, Walker M. Quantitation of 3-deoxyglucosone levels in human plasma.  Arch Biochem Biophys . 1997;  342 254-260
  • 36 Tsai E C, Hirsch I B, Brunzell J D, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM.  Diabetes . 1994;  43 1010-1014
  • 37 Baynes J W, Thorpe S R. The role of oxidative stress in diabetic complications.  Curr Opin Endocrinol . 1996;  3 277-284
  • 38 Yan S D, Schmidt A M, Anderson G M. Enhanced cellular oxidant stress by the interaction of advanced glycation end-products with their receptors/binding proteins.  J Biol Chem . 1994;  269 9889-9897
  • 39 Wautier J L, Wautier M P, Schmidt A M. Advanced glycation end-products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications.  Proc Natl Acad Sci USA . 1994;  91 7742-7746
  • 40 Thornalley P J, McLellan A C, Lo T W, Benn J, Sonksen P H. Negative association between erythrocyte reduced glutathione concentration and diabetic complications.  Clin Sci (Colch) . 1996;  91 575-582
  • 41 Thornalley P J. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase 1 inhibitors.  Chem Biol Interact . 1998;  111-112 137-151
  • 42 Sell D R, Monnier V M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived cross-link from aging human collagen.  J Clin Invest . 1990;  85 380-384
  • 43 Weiss M F, Erhard P, Kader-Attia F A. Mechanisms for the formation of glycoxidation products in end-stage renal disease.  Kidney Int . 2000;  57 2571-2585
  • 44 Cerami C, Founds H, Nicholl I. Tobacco smoke is a source of toxic reactive glycation products.  Proc Natl Acad Sci USA . 1997;  94 13915-13920
  • 45 Nicholl I D, Bucala R. Advanced glycation end-products and cigarette smoking.  Cell Mol Biol (Noisy-le-Grand) . 1998;  44 1025-1033
  • 46 Berg T J, Dahl-Jorgensen K, Torjesen P A, Hanssen K F. Increased serum levels of advanced glycation end-products (AGEs) in children and adolescents with IDDM.  Diabetes Care . 1997;  20 1006-1008
  • 47 Kilhovd B K, Berg T J, Birkeland K I, Thorsby P, Hanssen K F. Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease.  Diabetes Care . 1999;  22 1543-1548
  • 48 Yamaguchi M, Nakamura N, Nakano K. Immunochemical quantification of cross-line as a fluorescent advanced glycation end-product in erythrocyte membrane proteins from diabetic patients with or without retinopathy.  Diabet Med . 1998;  15 458-62
  • 49 Sell D R, Carlson E C, Monnier V M. Differential effects of type 2 (noninsulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane.  Diabetologia . 1993;  36 936-941
  • 50 Monnier V M, Vishwanath V, Frank K E, Elmets C A, Dauchot P, Kohn R R. Relation between complications of type 1 diabetes mellitus and collagen-linked fluorescence.  N Engl J Med . 1986;  314 403-408
  • 51 Sell D R, Lapolla A, Odetti P, Fogarty J, Monnier V M. Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM.  Diabetes . 1992;  41 1286-1292
  • 52 Monnier V M, Bautista O, Kenny D. Skin collagen glycation, glycoxidation, and cross-linking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial.  Diabetes . 1999;  48 870-880
  • 53 Yamanouchi J, Takatori A, Itagaki S, Kawamura S, Yoshikawa Y. APA hamster model for diabetic atherosclerosis. 2. Analysis of lipids and lipoproteins.  Exp Anim . 2000;  49 267-274
  • 54 Rumble J R, Cooper M E, Soulis T. Vascular hypertrophy in experimental diabetes. Role of advanced glycation end-products.  J Clin Invest . 1997;  99 1016-1027
  • 55 Suzuki D, Miyata T, Saotome N. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions.  J Am Soc Nephrol . 1999;  10 822-832
  • 56 Niwa T, Katsuzaki T, Miyazaki S. Immunohistochemical detection of imidazolone, a novel advanced glycation end-product, in kidneys and aortas of diabetic patients.  J Clin Invest . 1997;  99 1272-1280
  • 57 Mitsuhashi T, Nakayama H, Itoh T. Immunochemical detection of advanced glycation end-products in renal cortex from STZ-induced diabetic rat.  Diabetes . 1993;  42 826-832
  • 58 Horie K, Miyata T, Maeda K. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy.  J Clin Invest . 1997;  100 2995-3004
  • 59 Tanji N, Markowitz G S, Fu C. Expression of advanced glycation end-products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.  J Am Soc Nephrol . 2000;  11 1656-1666
  • 60 Stitt A W, Li Y M, Gardiner T A, Bucala R, Archer D B, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats.  Am J Pathol . 1997;  150 523-531
  • 61 Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S. Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation end-product.  Diabetologia . 1997;  40 1380-1387
  • 62 Lyons T J, Silvestri G, Dunn J A, Dyer D G, Baynes J W. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts.  Diabetes . 1991;  40 1010-1015
  • 63 Weiss M, Rodby R A, Justice A C, Hricik D E. Free pentosidine and neopterin as markers of progression rate in diabetic nephropathy. Collaborative Study Group.  Kidney Int . 1998;  54 193-202
  • 64 Vlassara H, Striker L J, Teichberg S, Fuh H, Li Y M, Steffes M. Advanced glycation end-products induce glomerular sclerosis and albuminuria in normal rats.  Proc Natl Acad Sci USA . 1994;  91 11704-11708
  • 65 Stitt A W, Bhaduri T, McMullen C B, Gardiner T A, Archer D B. Advanced glycation end-products induce blood-retinal barrier dysfunction in normoglycemic rats.  Mol Cell Biol Res Commun . 2000;  3 380-388
  • 66 Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation end-products promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits.  Mol Med . 1995;  1 447-456
  • 67 Schmidt A M, Weidman E, Lalla E. Advanced glycation end-products (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes.  J Periodontal Res . 1996;  31 508-515
  • 68 Lyons T J, Li W, Wells-Knecht M C, Jokl R. Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes.  Diabetes . 1994;  43 1090-1095
  • 69 Chibber R, Molinatti P A, Rosatto N, Lambourne B, Kohner E M. Toxic action of advanced glycation end-products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy.  Diabetologia . 1997;  40 156-164
  • 70 Yamamoto Y, Yamagishi S, Yonekura H. Roles of the AGE-RAGE system in vascular injury in diabetes.  Ann N Y Acad Sci . 2000;  902 163-172
  • 71 Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H. Advanced glycation end-products inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells.  Diabetologia . 1998;  41 1435-1441
  • 72 Ramirez R, Bedoya F J, Chiara M D, Sobrino F. Inhibitory effect of albumin-derived advanced glycosylation products on PMA-induced superoxide anion production by rat macrophages.  Life Sci . 1997;  60 2279-2289
  • 73 Chen S, Cohen M P, Ziyadeh F N. Amadori-glycated albumin in diabetic nephropathy: pathophysiologic connections.  Kidney Int . 2000;  S40-S44
  • 74 Cohen M P, Masson N, Hud E, Ziyadeh F, Han D C, Clements R S. Inhibiting albumin glycation ameliorates diabetic nephropathy in the db/db mouse.  Exp Nephrol . 2000;  8 135-143
  • 75 Mott J D, Khalifah R G, Nagase H, Shield 3rd F C, Hudson J K, Hudson B G. Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility.  Kidney Int . 1997;  52 1302-1312
  • 76 Verzijl N, DeGroot J, Thorpe S R. Effect of collagen turnover on the accumulation of advanced glycation end-products.  J Biol Chem . 2000;  275 39027-39031
  • 77 Chisolm G M, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview.  Free Radic Biol Med . 2000;  28 1815-1826
  • 78 Catapano A L, Maggi F M, Tragni E. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis.  Curr Opin Cardiol . 2000;  15 355-363
  • 79 Witztum J L, Mahoney E M, Branks M J, Fisher M, Elam R, Steinberg D. Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity.  Diabetes . 1982;  31 283-291
  • 80 Gupta S, Rifici V, Crowley S, Brownlee M, Shan Z, Schlondorff D. Interactions of LDL and modified LDL with mesangial cells and matrix.  Kidney Int . 1992;  41 1161-1169
  • 81 Bucala R, Makita Z, Vega G. Modification of low-density lipoprotein by advanced glycation end-products contributes to the dyslipidemia of diabetes and renal insufficiency.  Proc Natl Acad Sci USA . 1994;  91 9441-9445
  • 82 Lyons T J, Klein R L, Baynes J W, Stevenson H C, Lopes-Virella M F. Stimulation of cholesteryl ester synthesis in human monocyte-derived macrophages by low-density lipoproteins from type 1 (insulin-dependent) diabetic patients: the influence of non-enzymatic glycosylation of low-density lipoproteins.  Diabetologia . 1987;  30 916-923
  • 83 Witztum J L, Fisher M, Pietro T, Steinbrecher U P, Elam R L. Nonenzymatic glucosylation of high-density lipoprotein accelerates its catabolism in guinea pigs.  Diabetes . 1982;  31 1029-1032
  • 84 Duell P B, Oram J F, Bierman E L. Nonenzymatic glycosylation of HDL resulting in inhibition of high-affinity binding to cultured human fibroblasts.  Diabetes . 1990;  39 1257-1263
  • 85 Duell P B, Oram J F, Bierman E L. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux.  Diabetes . 1991;  40 377-384
  • 86 Hedrick C C, Thorpe S R, Fu M X. Glycation impairs high-density lipoprotein function.  Diabetologia . 2000;  43 312-320
  • 87 Iino K, Yoshinari M, Yamamoto M. Effect of glycated collagen on proliferation of human smooth muscle cells in vitro.  Diabetologia . 1996;  39 800-806
  • 88 Hogan M, Cerami A, Bucala R. Advanced glycosylation end-products block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus.  J Clin Invest . 1992;  90 1110-1115
  • 89 Bobbink I W, de Boer C H, Tekelenburg W L, Banga J D, de Groot G P. Effect of extracellular matrix glycation on endothelial cell adhesion and spreading: involvement of vitronectin.  Diabetes . 1997;  46 87-93
  • 90 Gilcrease M Z, Hoover R L. Human monocyte interactions with nonenzymatically glycated collagen.  Diabetologia . 1992;  35 160-164
  • 91 Kalfa T A, Gerritsen M E, Carlson E C, Binstock A J, Tsilibary E C. Altered proliferation of retinal microvascular cells on glycated matrix.  Invest Ophthalmol Vis Sci . 1995;  36 2358-2367
  • 92 Hammes H P, Weiss A, Hess S. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina.  Lab Invest . 1996;  75 325-338
  • 93 Krishnamurti U, Rondeau E, Sraer J D, Michael A F, Tsilibary E C. Alterations in human glomerular epithelial cells interacting with nonenzymatically glycosylated matrix.  J Biol Chem . 1997;  272 27966-27970
  • 94 Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors.  J Exp Med . 1986;  164 1301-1309
  • 95 Schmidt A M, Vianna M, Gerlach M. Isolation and characterization of two binding proteins for advanced glycosylation end-products from bovine lung which are present on the endothelial cell surface.  J Biol Chem . 1992;  267 14987-14997
  • 96 Schmidt A M, Yan S D, Brett J, Mora R, Nowygrod R, Stern D. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end-products.  J Clin Invest . 1993;  91 2155-2168
  • 97 Soulis T, Thallas V, Youssef S. Advanced glycation end-products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury.  Diabetologia . 1997;  40 619-628
  • 98 Park L, Raman K G, Lee K J. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end-products.  Nat Med . 1998;  4 1025-1031
  • 99 Wautier J L, Zoukourian C, Chappey O. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end-products blocks hyperpermeability in diabetic rats.  J Clin Invest . 1996;  97 238-243
  • 100 Bonnardel-Phu E, Wautier J L, Schmidt A M, Avila C, Vicaut E. Acute modulation of albumin microvascular leakage by advanced glycation end-products in microcirculation of diabetic rats in vivo.  Diabetes . 1999;  48 2052-2058
  • 101 Taguchi A, Blood D C, del Toro G. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases.  Nature . 2000;  405 354-360
  • 102 Schmidt A M, Hofmann M, Taguchi A, Yan S D, Stern D M. RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation.  Semin Thromb Hemost . 2000;  26 485-493
  • 103 Vlassara H, Li Y M, Imani F. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end-products (AGE): a new member of the AGE-receptor complex.  Mol Med . 1995;  1 634-646
  • 104 Pugliese G, Pricci F, Romeo G. Up-regulation of mesangial growth factor and extracellular matrix synthesis by advanced glycation end-products via a receptor-mediated mechanism.  Diabetes . 1997;  46 1881-1887
  • 105 Li Y M, Mitsuhashi T, Wojciechowicz D. Molecular identity and cellular distribution of advanced glycation end-product receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins.  Proc Natl Acad Sci USA . 1996;  93 11047-11052
  • 106 Pugliese G, Pricci F, Leto G. The diabetic milieu modulates the advanced glycation end-product receptor complex in the mesangium by inducing or up-regulating galectin-3 expression.  Diabetes . 2000;  49 1249-1257
  • 107 Pricci F, Leto G, Amadio L. Role of galectin-3 as a receptor for advanced glycosylation end-products.  Kidney Int . 2000;  S31-S39
  • 108 Stitt A W, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells.  Biochem Biophys Res Commun . 1999;  256 549-556
  • 109 Stitt A W, Burke G A, Chen F, McMullen C B, Vlassara H. Advanced glycation end-product receptor interactions on microvascular cells occur within caveolin-rich membrane domains.  FASEB J . 2000;  14 2390-2392
  • 110 Smedsrod B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end-products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells.  Biochem J . 1997;  322 567-573
  • 111 Nakata A, Nakagawa Y, Nishida M. CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta.  Arterioscler Thromb Vasc Biol . 1999;  19 1333-1339
  • 112 Ohgami N, Nagai R, Ikemoto M. CD36, a member of class B scavenger-receptor family, as a receptor for advanced glycation end-products (AGE).  J Biol Chem . 2001;  276 3195-3202
  • 113 Koya D, King G L. Protein kinase C activation and the development of diabetic complications.  Diabetes . 1998;  47 859-866
  • 114 Scivittaro V, Ganz M B, Weiss M F. AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells.  Am J Physiol Renal Physiol . 2000;  278 F676-F683
  • 115 Mene P, Pascale C, Teti A, Bernardini S, Cinotti G A, Pugliese F. Effects of advanced glycation end-products on cytosolic Ca2+ signaling of cultured human mesangial cells.  J Am Soc Nephrol . 1999;  10 1478-1486
  • 116 Jenkins A J, Velarde V, Klein R L. Native and modified LDL activate extracellular signal-regulated kinases in mesangial cells.  Diabetes . 2000;  49 2160-2169
  • 117 Schmidt A M, Hori O, Chen J X. Advanced glycation end-products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes.  J Clin Invest . 1995;  96 1395-1403
  • 118 Sengoelge G, Fodinger M, Skoupy S. Endothelial cell adhesion molecule and PMNL response to inflammatory stimuli and AGE-modified fibronectin.  Kidney Int . 1998;  54 1637-1651
  • 119 Nakamura N, Obayashi H, Fujii M. Induction of aldose reductase in cultured human microvascular endothelial cells by advanced glycation end-products.  Free Radic Biol Med . 2000;  29 17-25
  • 120 Bierhaus A, Chevion S, Chevion M. Advanced glycation end-product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells.  Diabetes . 1997;  46 1481-1490
  • 121 Zhang J, Ren S, Sun D, Shen G X. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells.  Arterioscler Thromb Vasc Biol . 1998;  18 1140-1148
  • 122 Yang C W, Vlassara H, Peten E P, He C J, Striker G E, Striker L J. Advanced glycation end-products up-regulate gene expression found in diabetic glomerular disease.  Proc Natl Acad Sci USA . 1994;  91 9436-9440
  • 123 Kushiro M, Shikata K, Sugimoto H, Ikeda K, Horiuchi S, Makino H. Accumulation of Nsigma-(carboxy-methyl)lysine and changes in glomerular extracellular matrix components in Otsuka Long-Evans Tokushima fatty rat: a model of spontaneous NIDDM.  Nephron . 1998;  79 458-468
  • 124 Gilbert R E, Cooper M E. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?.  Kidney Int . 1999;  56 1627-1637
  • 125 Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. The relationship between accumulation of advanced glycation end-products and expression of vascular endothelial growth factor in human diabetic retinas.  Diabetologia . 1997;  40 764-769
  • 126 Chakravarthy U, Hayes R G, Stitt A W, McAuley E, Archer D B. Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end-products.  Diabetes . 1998;  47 945-952
  • 127 Handa J T, Verzijl N, Matsunaga H. Increase in the advanced glycation end-product pentosidine in Bruch's membrane with age.  Invest Ophthalmol Vis Sci . 1999;  40 775-779
  • 128 Westwood M E, Thornalley P J. Induction of synthesis and secretion of interleukin-1 beta in the human monocytic THP-1 cells by human serum albumins modified with methylglyoxal and advanced glycation end-products.  Immunol Lett . 1996;  50 17-21
  • 129 Hasegawa G, Nakano K, Sawada M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy.  Kidney Int . 1991;  40 1007-1012
  • 130 Morohoshi M, Fujisawa K, Uchimura I, Numano F. The effect of glucose and advanced glycosylation end-products on IL-6 production by human monocytes.  Ann N Y Acad Sci . 1995;  748 562-570
  • 131 Jandeleit-Dahm K, Rumble J, Cox A J. SPARC gene expression is increased in diabetes-related mesenteric vascular hypertrophy.  Microvasc Res . 2000;  59 61-71
  • 132 Rellier N, Ruggiero D, Lecomte M, Lagarde M, Wiernsperger N. Advanced glycation end-products induce specific glycoprotein alterations in retinal microvascular cells.  Biochem Biophys Res Commun . 1997;  235 281-285
  • 133 Reddy S, Bichler J, Wells-Knecht K J, Thorpe S R, Baynes J W. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end-product (AGE) antigen in tissue proteins.  Biochemistry . 1995;  34 10872-10878
  • 134 Shibayama R, Araki N, Nagai R, Horiuchi S. Autoantibody against N(epsilon)-(carboxymethyl)lysine: an advanced glycation end-product of the Maillard reaction.  Diabetes . 1999;  48 1842-1849
  • 135 Virella G, Koskinen S, Krings G, Onorato J M, Thorpe S R, Lopes-Virella M. Immunochemical characterization of purified human oxidized low-density lipoprotein antibodies.  Clin Immunol . 2000;  95 135-144
  • 136 Aoki Y, Yanagisawa Y, Yazaki K, Oguchi H, Kiyosawa K, Furuta S. Protective effect of vitamin E supplementation on increased thermal stability of collagen in diabetic rats.  Diabetologia . 1992;  35 913-916
  • 137 Jenkins A J, Li W, Moller K. Pre-enrichment of modified low-density lipoproteins with alpha-tocopherol mitigates adverse effects on cultured retinal capillary cells.  Curr Eye Res . 1999;  19 137-145
  • 138 Bursell S E, Clermont A C, Aiello L P. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes.  Diabetes Care . 1999;  22 1245-1251
  • 139 Kunisaki M, Bursell S E, Umeda F, Nawata H, King G L. Prevention of diabetes-induced abnormal retinal blood flow by treatment with d-alpha-tocopherol.  Biofactors . 1998;  7 55-67
  • 140 Kowluru R A, Engerman R L, Kern T S. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. VI. Comparison of retinal and cerebral cortex metabolism, and effects of antioxidant therapy.  Free Radic Biol Med . 1999;  26 371-378
  • 141 Saxena P, Saxena A K, Cui X L, Obrenovich M, Gudipaty K, Monnier V M. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end-products.  Invest Ophthalmol Vis Sci . 2000;  41 1473-1481
  • 142 Sajithlal G B, Chithra P, Chandrakasan G. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats.  Biochem Pharmacol . 1998;  56 1607-1614
  • 143 Renier G, Desfaits A C, Serri O. Gliclazide decreases low-density lipoprotein oxidation and monocyte adhesion to the endothelium.  Metabolism . 2000;  49 17-22
  • 144 Imaeda A, Aoki T, Kondo Y. Protective effects of fluvastatin against reactive oxygen species induced DNA damage and mutagenesis.  Free Radic Res . 2001;  34 33-44
  • 145 Sobala G, Menzel E J, Sinzinger H. Calcium antagonists as inhibitors of in vitro low-density lipoprotein oxidation and glycation.  Biochem Pharmacol . 2001;  61 373-379
  • 146 United Kingdom Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet . 1998;  352 837-853
  • 147 Koschinsky T, He C J, Mitsuhashi T. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy.  Proc Natl Acad Sci USA . 1997;  94 6474-6479
  • 148 Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.  Science . 1986;  232 1629-1632
  • 149 Edelstein D, Brownlee M. Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats.  Diabetologia . 1992;  35 96-97
  • 150 Soulis T, Cooper M E, Vranes D, Bucala R, Jerums G. Effects of aminoguanidine in preventing experimental diabetic nephropathy are related to the duration of treatment.  Kidney Int . 1996;  50 627-634
  • 151 Soulis T, Cooper M E, Sastra S. Relative contributions of advanced glycation and nitric oxide synthase inhibition to aminoguanidine-mediated renoprotection in diabetic rats.  Diabetologia . 1997;  40 1141-1151
  • 152 Sugimoto H, Shikata K, Wada J, Horiuchi S, Makino H. Advanced glycation end-products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: aminoguanidine ameliorates the overexpression of tumour necrosis factor-alpha and inducible nitric oxide synthase in diabetic rat glomeruli.  Diabetologia . 1999;  42 878-886
  • 153 Bach L A, Dean R, Youssef S, Cooper M E. Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy.  Nephrol Dial Transplant . 2000;  15 347-354
  • 154 Youssef S, Nguyen D T, Soulis T, Panagiotopoulos S, Jerums G, Cooper M E. Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding.  Kidney Int . 1999;  55 907-916
  • 155 Roufail E, Soulis T, Boel E, Cooper M E, Rees S. Depletion of nitric oxide synthase-containing neurons in the diabetic retina: reversal by aminoguanidine.  Diabetologia . 1998;  41 1419-1425
  • 156 Kern T S, Tang J, Mizutani M. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia.  Invest Ophthalmol Vis Sci . 2000;  41 3972-3978
  • 157 Lyons T J, Li W, Wojciechowski B, Wells-Knecht M C, Wells-Knecht K J, Jenkins A J. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells.  Invest Ophthalmol Vis Sci . 2000;  41 1176-1180
  • 158 Booth A A, Khalifah R G, Hudson B G. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine.  Biochem Biophys Res Commun . 1996;  220 113-119
  • 159 Khalifah R G, Baynes J W, Hudson B G. Amadorins: novel post-Amadori inhibitors of advanced glycation reactions.  Biochem Biophys Res Commun . 1999;  257 251-258
  • 160 Booth A A, Khalifah R G, Todd P, Hudson B G. In vitro kinetic studies of formation of antigenic advanced glycation end-products (AGEs). Novel inhibition of post-Amadori glycation pathways.  J Biol Chem . 1997;  272 5430-5437
  • 161 Onorato J M, Jenkins A J, Thorpe S R, Baynes J W. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine.  J Biol Chem . 2000;  275 21177-21184
  • 162 Tsukushi S, Katsuzaki T, Aoyama I. Increased erythrocyte 3-DG and AGEs in diabetic hemodialysis patients: role of the polyol pathway.  Kidney Int . 1999;  55 1970-1976
  • 163 Hamada Y, Nakamura J, Naruse K. Epalrestat, an aldose reductase inhibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients.  Diabetes Care . 2000;  23 1539-1544
  • 164 Cohen M P, Klepser H, Wu V Y. Evaluation of the effect of aldose reductase inhibition on increased basement membrane collagen fluorescence in diabetic rats.  Gen Pharmacol . 1991;  22 603-606
  • 165 Beisswenger P J, Howell S K, Touchette A D, Lal S, Szwergold B S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes.  Diabetes . 1999;  48 198-202
  • 166 Tanaka Y, Uchino H, Shimizu T. Effect of metformin on advanced glycation end-product formation and peripheral nerve function in streptozotocin-induced diabetic rats.  Eur J Pharmacol . 1999;  376 17-22
  • 167 United Kingdom Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).  Lancet . 1998;  352 854-865
  • 168 Shoda H, Miyata S, Liu B F. Inhibitory effects of tenilsetam on the Maillard reaction.  Endocrinology . 1997;  138 1886-1892
  • 169 Nakamura S, Makita Z, Ishikawa S. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation.  Diabetes . 1997;  46 895-899
  • 170 Soulis T, Sastra S, Thallas V. A novel inhibitor of advanced glycation end-product formation inhibits mesenteric vascular hypertrophy in experimental diabetes.  Diabetologia . 1999;  42 472-479
  • 171 Schmidt A M, Stern D M. RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes.  Trends Endocrinol Metab . 2000;  11 368-375
  • 172 Vasan S, Zhang X, Kapurniotu A. An agent-cleaving glucose-derived protein cross-links in vitro and in vivo.  Nature . 1996;  382 275-278
  • 173 Wolffenbuttel B H, Boulanger C M, Crijns F R. Breakers of advanced glycation end-products restore large artery properties in experimental diabetes.  Proc Natl Acad Sci USA . 1998;  95 4630-4634
  • 174 Asif M, Egan J, Vasan S. An advanced glycation end-product cross-link breaker can reverse age-related increases in myocardial stiffness.  Proc Natl Acad Sci USA . 2000;  97 2809-2813
  • 175 Vaitkevicius P V, Lane M, Spurgeon H. A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys.  Proc Natl Acad Sci USA . 2001;  98 1171-1175
  • 176 Oturai P S, Christensen M, Rolin B, Pedersen K E, Mortensen S B, Boel E. Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats.  Metabolism . 2000;  49 996-1000
  • 177 Ulrich P, Cerami A. Protein glycation, diabetes, and aging.  Recent Prog Horm Res . 2001;  56 1-21
  • 178 Mitsuhashi T, Li Y M, Fishbane S, Vlassara H. Depletion of reactive advanced glycation end-products from diabetic uremic sera using a lysozyme-linked matrix.  J Clin Invest . 1997;  100 847-854
    >