Plant Biol (Stuttg) 2002; 4(1): 70-76
DOI: 10.1055/s-2002-20438
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Three-Dimensional Reconstruction of the Stomatal Complex in Pinus canariensis Needles Using Serial Sections

G. Zellnig 1 , J. Peters 2 , M. S. Jiménez 2 , D. Morales 2 , D. Grill 1 , A. Perktold 1
  • 1 Institut für Pflanzenphysiologie, Universität Graz, Graz, Austria
  • 2 Dpto. Biología Vegetal, Universidad de La Laguna, La Laguna, Tenerife, Spain
Further Information

Publication History

June 8, 2001

November 13, 2001

Publication Date:
28 February 2002 (online)

Abstract

The three-dimensional (3D) morphology of the stomata in leaves of Pinus canariensis is described with respect to the spatial arrangement of guard cells, subsidiary cells, polar and lateral cells. Serial semi-thin sections of the stomatal apparatus were digitally reconstructed and analysed with regard to the position, shape and size of the cell types involved. The stomatal complex consists of 16 cells with uniquely shaped polar and lateral cells. The polar cells form a kind of roof above the epistomatal chamber thereby reducing the surface aperture. The structural features of the stomatal complex differ from other Pinus species and are presumed to be an adaptation to extreme environmental conditions.

Abbreviations

3D: three-dimensional

2D: two-dimensional

References

  • 01 Altieri,  A.,, Del Caldo,  L.,, and Manes,  F.. (1994);  Morphology of epicuticular waxes in Pinus pinea needles in relation to season and pollution-climate.  Eur. J. For. Path.. 24 79-91
  • 02 Black,  J. T.. (1971);  Ultramicrotomy of embedding plastics.  Appl. Polymer Symp.. 16 105-125
  • 03 Bozzola,  J. J., and Russell,  L. D.. (1992) Electron microscopy: principles and techniques for biologists. Boston, London; Jones and Bartlett Publishers
  • 04 Bussotti,  F.,, Bottacci,  A.,, Grossoni,  P.,, Mori,  B.,, and Tani,  C.. (1997);  Cytological and structural changes in Pinus pinea L. needles following the application of an anionic surfactant.  Plant, Cell and Environment. 20 513-520
  • 05 Chinga,  G.,, Skagen,  E. B.,, Kittang,  A.-I.,, Beisvaag,  T.,, and Iversen,  T.-H.. (2000);  3D reconstruction of Arabidopsis thaliana root statocytes exposed to different gravity conditions.  Microscopy and Analysis (UK). 64 9-11
  • 06 Donaldson,  L. A., and Lausberg,  M. J. F.. (1998);  Comparison of conventional transmitted light and confocal microscopy for measuring wood cell dimensions by image analysis.  IAWA Journal. 19 321-336
  • 07 Esau,  K.. (1977) Anatomy of seed plants. New York; Wiley
  • 08 Fahn,  A.. (1974) Plant anatomy. Oxford; Pergamon Press
  • 09 Fink,  S.. (1992) Histologische und histochemische Untersuchungen zur Nährstoffdynamik in Waldbäumen im Hinblick auf die neuartigen Waldschäden. Karlsruhe; KfK-PEF Bericht 98
  • 10 Franich,  R. A.,, Wells,  L. G.,, and Barnett,  J. R.. (1977);  Variation with tree age of needle cuticle topography and stomatal structure in Pinus radiata D.  Don. Ann. Bot.. 41 621-626
  • 11 Gray,  J. D.,, Kolesik,  P.,, Hoj,  P. B.,, and Coombe,  B. G.. (1999);  Confocal measurement of the three-dimensional size and shape of plant parenchyma cells in a developing fruit tissue.  The Plant Journal. 19 229-236
  • 12 Grill,  D.,, Guttenberger,  H.,, Zellnig,  G.,, and Bermadinger,  E.. (1989);  Reactions of plant cells to air pollution.  Phyton (Austria). 29 277-290
  • 13 Jimenez,  M. S.,, Zellnig,  G.,, Stabentheiner,  E.,, Peters,  J.,, Morales,  D.,, and Grill,  D.. (2000);  Structure and ultrastructure of Pinus canariensis needles.  Flora. 195 228-235
  • 14 Johnson,  R. W., and Riding,  R. T.. (1981);  Structure and ontogeny of the stomatal complex in Pinus strobus L. and Pinus banksiana Lamb.  Amer. J. Bot.. 68 260-268
  • 15 Kim,  K.,, Whang,  S. S.,, and Hill,  R. S.. (1999);  Cuticle micromorphology of leaves of Pinus (Pinaceae) in east and south-east Asia.  Botanical J. of the Linnean Society. 129 55-74
  • 16 Kuroiwa,  H.,, Ohta,  T.,, and Kuroiwa,  T.. (1996);  Studies on the development and three-dimensional reconstruction of giant mitochondria and their nuclei in egg cells of Pelargonium zonale Ait.  Protoplasma. 192 235-244
  • 17 Laakso,  K.,, Sullivan,  J. H.,, and Huttunen,  S.. (2000);  The effect of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.).  Plant, Cell and Environment. 23 461-472
  • 18 Louguet,  P.,, Coudret,  A.,, Couot-Gastelier,  J.,, and Lasceve,  G.. (1990);  Structure and ultrastructure of stomata.  Biochem. Physiol. Pflanzen. 186 273-287
  • 19 Maier-Maercker,  U.. (1998);  Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air.  Trees. 12 181-185
  • 20 Napp-Zinn,  K.. (1966) Anatomie des Blattes. I. Blattanatomie der Gymnospermen. Handbuch der Pflanzenanatomie VIII, 1. Zimmermann, W., Ozenda, P., and Wulff, H. D., eds. Berlin-Nikolassee; Gebrüder Borntraeger pp. 49-87
  • 21 Perkins,  G.,, Renken,  C.,, Martone,  M. E.,, Young,  S. Y.,, Ellisman,  M.,, and Frey,  T.. (1997);  Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts.  J. Struct. Biol.. 119 260-272
  • 22 Pöllinger,  U.. (1998) Anatomie und Histochemie der Nadel von Pinus canariensis Sweet ex K. Sprengel. University of Graz, Austria; Masters work: Institute of Plant Physiology
  • 23 Pritchard,  S. G.,, Mosjidis,  C.,, Peterson,  C. M.,, Runion,  G. B.,, and Rogers,  H. H.. (1998);  Anatomical and morphological alterations in longleaf pine needles resulting from growth in elevated CO2: interactions with soil resource availability.  Int. J. Plant Sci.. 156 1002-1009
  • 24 Reid,  N., and Beesley,  J. E.. (1991) Sectioning and cryosectioning for electron microscopy. Practical methods in electron microscopy, Vol. 13. Glauert, A. M., ed. Amsterdam, New York, Oxford; Elsevier pp. 1-14
  • 25 Sauter,  J. J., and Pambor,  L.. (1989);  The dramatic corrosive effect of the road side exposure and of aromatic hydrocarbons on the epistomatal wax crystalloids in spruce and fir and its significance for the “Waldsterben”.  Eur. J. For. Path.. 19 370-378
  • 26 Soikkeli,  S.. (1980);  Ultrastructure of the mesophyll in Scots pine and Norway spruce: seasonal variation and molarity of the fixative buffer.  Protoplasma. 103 241-252
  • 27 Turunen,  M., and Huttunen,  S.. (1990);  A review of the response of epicuticular wax of conifer needles to air pollution.  J. Environ. Quality. 19 35-45
  • 28 Viskari,  E.-L.,, Holopainen,  T.,, and Kärenlampi,  L.. (2000);  Responses of spruce seedlings (Picea abies) to exhaust gas under laboratory conditions - II ultrastructural changes and stomatal behaviour.  Environ. Poll.. 107 99-107
  • 29 Walter,  H., and Breckle,  S. W.. (1999) Vegetation und Klimazonen. UTB 14. Stuttgart; Ulmer
  • 30 White,  N. S.,, Errington,  J.,, Fricker,  M. D.,, and Wood,  J. L.. (1996);  Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy.  J. Microsc.. 181 99-116
  • 31 Zellnig,  G., and Perktold,  A.. (1999);  Plant organelles analyzed by ultrathin serial-sections.  Phyton (Austria). 39 65-68

G. Zellnig

Institute of Plant Physiology

Schubertstr. 51
8010 Graz
Austria

Email: guenther.zellnig@uni-graz.at

Section Editor: H. Rennenberg

    >