Plant Biol (Stuttg) 2002; 4(1): 22-26
DOI: 10.1055/s-2002-20432
Original Paper
Georg Thieme Verlag Stuttgart ·New York

The Geometrical Model for Microfibril Deposition and the Influence of the Cell Wall Matrix

A. M. C. Emons 1 , J. H. N. Schel 1 , B. M. Mulder 2
  • 1 Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
  • 2 FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Further Information

Publication History

July 20, 2001

January 2, 2002

Publication Date:
28 February 2002 (online)

Abstract

A theory for cell wall deposition has been formulated consistent with present day experimental data on cell walls and cellular processes. This theory has a generic origin, geometrical constraints, as the underlying cause for the cell wall architecture. The theory has been worked out as a fully mathematical model, allowing for specific predictions of a qualitative and quantitative nature. The key point of the geometrical theory is the coupling of the trajectory of the cellulose microfibril synthases, i.e., rosettes, to their density. This coupling provides the cell with a mechanism for manipulating the cell wall texture by creating controlled local variations in the number of active synthases. In the present paper we show that the geometrical model can explain the helicoidal, crossed polylamellate, helical and axial wall textures, which are the basic textures found in plant cell walls. In addition, we discuss the role of cortical microtubules in the wall deposition process and how the cell wall matrix contributes to cell wall texture determination.

Abbreviations

CMF: cellulose microfibril

References

  • 01 Bacic,  A.,, Harris,  P. J.,, and Stone,  B. A.. (1988) Structure and function of plant cell walls. The Biochemistry of Plants: A Comprehensive Treatise, Vol. 14. Preiss, J., ed. San Diego; Academic Press pp. 297-371
  • 02 Reiter,  W.-D.. (1998);  The molecular analysis of cell wall components.  Trends in Plant Science. 3 27-32
  • 03 Carpita,  N. C., and Gibeaut,  D. M.. (1993);  Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth.  Plant J.. 3 1-30
  • 04 Herth,  W.. (1980);  Calcofluor white and congo red inhibit chitin microfibril assembly of Poteriochromonas: evidence for a gap between polymerization and microfibril formation.  J. Cell Biol.. 87 442-450
  • 05 Giddings,  T. H., and Staehelin,  L. A.. (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. The cytoskeletal basis of plant growth and form. Lloyd, C. W., ed. New York; Academic Press pp. 85-100
  • 06 Emons,  A M. C.,, Derksen,  J. H. M.,, and Sassen,  M. M. A.. (1992);  Do microtubules control plant cell wall microfibrils?.  Physiol. Plant.. 84 486-493
  • 07 Itoh,  T.. (1989) Biogenesis of cellulose microfibrils and the role of microtubules in green algae. ACS Symposium, series no. 399. Plant cell wall polymers: Biogenesis and biodegradation. Lewis, N. G. and Paice, M. G., eds. Washington, DC; American Chemical Society, ACS Symposium series 399 pp. 257-277
  • 08 Emons,  A. M. C.. (1988);  A comparison of methods for visualization of the cell wall microfibrils.  Acta Bot. Neerl.. 37 31-38
  • 09 Emons,  A. M. C.. (1994);  Winding threads around plant cells: a geometrical model for microfibril deposition.  Plant Cell and Environment. 17 3-14
  • 10 Emons,  A. M. C., and Kieft,  H.. (1994);  Winding threads around plant cells: applications of the geometrical model for microfibril deposition.  Protoplasma. 180 59-69
  • 11 Emons,  A. M. C., and Mulder,  B. M.. (1997);  Plant cell wall architecture.  Comments Theor. Biol.. 4 115-131
  • 12 Emons,  A. M. C., and Mulder,  B. M.. (1998);  The making of the architecture of the plant cell wall: how cells exploit geometry.  Proc. Natl. Acad. Sci. USA. 95 7215-7219
  • 13 Emons,  A. M. C., and Mulder,  B. M.. (2000);  How the deposition of cellulose microfibrils builds cell wall architecture.  Trends in Plant Science. 5 35-40
  • 14 Mueller,  S. C., and Brown,  R. M. Jr.. (1980);  Evidence for an intramembranous component associated with a cellulose microfibril-synthesizing complex in higher plants.  J. Cell Biol.. 84 315-326
  • 15 Emons,  A. M. C.. (1991) The role of rosettes and terminal globules in cellulose synthesis. Biosynthesis and Biodegradation of Cellulose and Cellulosic Material. Weimer, P. and Haigler, C. H., eds. New York; Marcel Dekker pp. 71-98
  • 16 Delmer,  D. P.. (1999);  Cellulose biosynthesis, Exiting times for a difficult field of study.  Annu. Rev. Plant Physiol. Plant Mol. Biol.. 50 245-276
  • 17 Kimura,  S., Laosinchai,  W.,, Itoh,  T.,, Cui,  X.,, Lindner,  C. R.,, and Brown,  R. M.. (1999);  Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. .  Plant Cell. 11 2075-2085
  • 18 Mulder,  B. M., and Emons,  A. M. C.. (2001);  A dynamical model for plant cell wall architecture formation.  J. Math. Biol.. 42 261-289
  • 19 Cyr,  R. J.. (1994);  Microtubules in plant morphogenensis: role of the cortical arrray.  Annu. Rev. Cell Biol.. 10 153-180
  • 20 Staehelin,  L. A., and Giddings,  T. H. Jr.. (1982) Membrane mediated control of cell wall microfibrillar order. Developmental order: Its origin and regulation. Subtelny, S. and Green, P. B., eds. New York; A. R. Liss pp. 133-147
  • 21 Wymer,  C., and Lloyd,  C. W.. (1996);  Dynamic microtubules: implications for cell wall patterns.  Trends in Plant Sci.. 7 222-228
  • 22 Satiat-Jeunemaître,  B.. (1991);  Microtubule and microfibril arrangements during cell wall expansion along the growth gradient of the mung bean hypocotyl.  Ann. Sci. Nat. Bot.. 11 105-115
  • 23 Wilms,  F. H. A.,, Wolters-Arts,  A. M. C.,, and Derksen,  J.. (1990);  Orientation of cellulose microfibrils in cortical cells of tobacco explants. Effect of microtubule-depolymerizing drugs.  Planta. 182 1-8
  • 24 Sugimoto,  K.,, Williamson,  R. E.,, and Wasteneys,  G. O.. (2000);  New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. .  Plant Physiol.. 124 1493-1506
  • 25 Hogetsu,  T.. (1986);  Orientation of wall microfibril deposition in root cells of Pisum sativum L. var. Alska.  Plant Cell Physiol. . 27 947-951
  • 26 Traas,  J. A., and Derksen,  J.. (1989);  Microtubules and cellulose microfibrils in plant cells: simultaneous demonstration in dry cleave preparations.  Eur. J. Cell Biol.. 48 159-164
  • 27 Baskin,  T. I.,, Meekes,  H. T. H. M.,, Liang,  B. M.,, and Sharp,  R. E.. (1999);  Regulation of growth anisotropy in well-watered and water-stressed maize roots: II Role of cortical microtubules and cellulose microfibrils.  Plant Physiol.. 119 681-692
  • 28 Emons,  A. M. C.,, Wolters-Arts,  A. M. C.,, Traas,  J.,, and Derksen,  J.. (1990);  The effect of colchicine on microtubules and microfibrils in root hairs.  Acta Bot. Neerl.. 39 10-27
  • 29 Ketelaar,  T., and Emons,  A. M. C.. (2000) The role of microtubules in root hair growth and cellulose microfibril deposition. Root hairs cell and molecular biology. Ridge, R. W. and Emons, A. M. C., eds. Tokio; Springer-Verlag pp. 17-28
  • 30 Fischer,  D. D., and Cyr,  R. J.. (1998);  Extending the microtubule/microfibril paradigm. Cellulose synthesis is required for normal cortical microtubule alignment in elongating cells.  Plant Physiol.. 116 1043-1051
  • 31 Vian,  B.,, Reis,  D.,, Mosiniak,  M.,, and Roland,  J. C.. (1986);  The glucuronoxylans and the helicoidal shift in cellulose microfibrils in linden wood: cytochemistry in muro and on isolated molecules.  Protoplasma. 131 185-199
  • 32 Brett,  C. T.. (2000);  Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall.  Int. Rev. Cytol.. 199 161-199
  • 33 Atalla,  R. H.,, Hackney,  J. M.,, Uhlin,  I.,, and Thompson,  N. S.. (1993);  Hemicelluloses as structure regulators in the aggregation of native cellulose.  Int. J. Macromol.. 15 109-112
  • 34 Satiat-Jeunemaître,  B.. (1987);  Inhibition of the helicoidal assembly of the cellulose-hemicellulose complex by 2,6-dichlorobenzonitrile (DCB).  Biol. Cell.. 59 89-96
  • 35 John,  F.. (1975) Partial Differential Equations. New York; Springer Verlag
  • 36 Hale,  J. K., and Verduyn Lunel,  S. M.. (1993) Introduction to Functional Differential Equations. New York; Springer Verlag

A. M. C. Emons

Laboratory of Plant Cell Biology
Department of Plant Sciences
Wageningen University

Arboretumlaan 4
6703 BD Wageningen
The Netherlands

Email: Annemie.emons@pcb.dpw.wag-ur.nl

Section Editor: U. Lüttge

    >