Subscribe to RSS
DOI: 10.1055/s-2002-19358
Solid-Phase Synthesis of 6-Sulfonylamino Morphinan Libraries
Publication History
Publication Date:
01 February 2007 (online)
Abstract
A solid-phase synthesis of 6-sulfonylamino morphinan has been developed. The morphinan derivatives were designed as selective opioid ligands. The sulfonamide moiety was introduced by reductive amination of a ketone on solid phase, followed by sulfonylation of the resulting amine. Using this methodology, the synthesis of three combinatorial libraries was accomplished to prepare 339 morphinan derivatives with over 70% purity.
Key words
opioid - morphinan - solid-phase synthesis - ketones - sulfonamides
-
1a
Sencei P. Solid-Phase Synthesis and Combinatorial Technology Willy-Interscience; New York: 2000. -
1b
Dorwald FZ. Organic Synthesis on Solid Phase Willy-VCH; New York: 2000. - 2
Matsuda A.Doi T.Tanaka H.Takahashi T. Synlett 2001, 1101 - 3 Review of opioid compounds:
Misicka A. Acta. Pol. Pharm. 1995, 52: 349 - 4
Nagase H.Hayakawa J.Kawamura K.Kawai K.Takezawa Y.Matsuura H.Tajima C.Endo T. . Chem. Pharm. Bull. 1998, 46: 366 - Message-address concept is that an opiod ligand can be divided into a message structure part and an address structural part:
-
5a
Portoghese PS.Lipkowski AW.Takemori AE. J. Med. Chem. 1987, 30: 238 -
5b
Portoghese PS.Sultana M.Nagase H.Takemori AE. J. Med. Chem. 1988, 31: 281 - 6
Nogrady T. Medicinal Chemistry In Oxford University Press; New York: 1985. p.68 -
8a
Boojamra CG.Burow KM.Thompson LA.Ellman JA. J. Org. Chem. 1997, 62: 1240 -
8b
Kim SW.Ahn SY.Koh JS.Lee JH.Ro S.Cho HY. Tetrahedron Lett. 1997, 38: 4603 -
8c
Swayze EE. Tetrahedron Lett. 1997, 38: 8465 -
8d
Swayze EE. Tetrahedron Lett. 1997, 38: 8643 -
8e
Devraj R.Cushman M. J. Org. Chem. 1996, 61: 9368 -
8f
Bray AM.Chiefari DS.Valerio RM.Maeji NJ. Tetrahedron Lett. 1995, 36: 5081 - 9 Synthesis of 6α- and 6β-methylamino morphinans:
Mohamed MS.Larson DL.Takemori AE.Portoghese PS. J. Med. Chem. 1986, 29: 1551 - 10 The ratio 9/11 was determined by MS peak height:
Andrew MB.Debra SC.Robert MV.Maeji JN. Tetrahedron Lett. 1995, 5081 - 11
Fivush AM.Willson TM. Tetrahedron Lett. 1997, 38: 7151 -
12a
Nicolaou KC.Xiao XY.Parandoosh Z.Senyei A.Nova MP. Angew. Chem. Int. Ed. Engl. 1995, 34: 2289 -
12b
IRORI, P.O. Box 502778, San Diego, CA 92150-2778, www.irori.com.
References
Column: HYPERSIL ODS 5 µm, 4.6 × 150 mm; mobile phase: 20 mM AcONH4:MeOH = 70:30 (0 min)-10:90 (6-12 min); UV: 254 nm.
13General procedure for the solid phase synthesis of 6-sulfonamido-morphinans 2: To a mixture of Wang resin (NOVA; 0.72 mmol/g, 4.00 g, 2.88 mmol), naltrexone (5) (4.37 g, 12.8 mmol) and PPh3 (1.78 g, 6.8 mmol) in THF was slowly added a 40% toluene solution of DEAD (3.10 mL, 6.8 mmol). The resulting suspension was shaken at room temperature for 19 h. The solvents were then removed by filtration and the resulting beads were washed with THF, DMF, MeOH, THF, and CH2Cl2, and dried in vacuo to give resin-supported naltrexone 4 (5.26 g). The beads (31 mg) were packed in Microkans, and 14 Microkans in DMF-MeOH-HOAc (100:10:1) (14 mL) were treated with methylamine hydrochloride (143 mg, 2.1 mmol) and NaBH3CN (267 mg, 4.06 mmol). After being shaken for 28 h, the mixture was filtered, washed with DMF, MeOH, THF, and CH2Cl2, and dried in vacuo to give resin 8a. To one of the resulting Microkans in CH2Cl2 (1 mL), DIEA (188 µL, 1.08 mmol) and p-toluenesulfonyl chloride (107 mg, 0.54 mmol) were added. The mixture was shaken for 2 h, filtered, washed with THF, DMF, MeOH, THF, and CH2Cl2, and dried in vacuo. The resulting Microkan was treated with 10% TFA/CH2Cl2 (2 mL) for 30 min, filtered, and then washed with CH2Cl2. The combined filtrates were evaporated, and dried in vacuo to give 14.6 mg of morphinan compound 2aA TFA salt with 96% purity determined by reversed-phase HPLC. MS m/z 511 ((M + H)+). a-2c 1H NMR (270 MHz, CDCl3) δ 0.09-0.15 (1H, m), 0.50-0.57 (2H, m), 0.80-0.90 (2H, m), 1.04-1.14 (1 H, m), 1.38 (1 H, dd, J = 8.6, 14.9 Hz), 1.55-1.69 (2 H, m), 2.18-2.32 (3 H, m), 2.35-2.44 (1 H, m), 2.41 (3 H, s), 2.50-2.59 (1 H, m), 2.62-2.67 (1 H, m), 2.88 (3 H, s), 3.01 (1 H, d, J = 18.8 Hz), 3.08 (1 H, d, J = 6.6 Hz), 4.49 (1 H, ddd, J = 3.8, 3.8, 13.1 Hz), 4.79-4.81 (1 H, m), 6.51 (1 H, d, J = 7.9 Hz), 6.70 (1 H, d, J = 7.9 Hz), 7.29 (2 H, d, J = 7.9 Hz), 7.74 (2 H, d, J = 8.6 Hz); 13C NMR (67.8 MHz, CDCl3) δ 3.8, 4.2, 9.4, 17.5, 21.6, 22.9, 29.8, 30.2, 31.7, 33.7, 43.1, 48.2, 53.1, 59.7, 62.0, 69.5, 94.4, 117.2, 119.2, 126.0, 127.1, 129.8, 130.8, 136.5, 137.4, 143.2, 145.4; IR(neat) 3355, 2928, 1616, 1463, 1337, 1152, 940, 859, 757, 666 cm-1. HRMS (ESI) 511 (M + H+), calcd 511.2267, found 511.2280. b-2c 1H NMR (270 MHz, CDCl3) δ 0.09-0.14 (2 H, m), 0.49-0.55 (2 H, m), 0.77-0.90 (2 H, m), 1.13-1.23 (1 H, m), 1.33-1.60 (3 H, m), 1.93-2.26 (3 H, m), 2.36 (2 H, d, J = 6.6 Hz), 2.41 (3 H, s), 2.53-2.66 (2 H, m), 2.85 (3 H, s), 3.00 (1 H, d, J = 10.6 Hz), 3.05 (1 H, s), 3.75 (1 H, ddd, J = 4.6, 8.3, 12.9 Hz), 4.50 (1 H, d, J = 7.9 Hz), 6.59 (1 H, d, J = 9.3 Hz), 6.75 (1 H, d, J = 8.3 Hz), 7.27 (2 H, d, J = 8.3 Hz), 7.67 (2 H, d, J = 8.6 Hz); 13C NMR (67.8 MHz, CDCl3) δ 3.9, 3.9, 9.5, 21.6, 22.0, 22.7, 29.6, 30.5, 30.8, 44.0, 48.1, 58.8, 59.2, 62.4, 70.1, 89.4, 117.7, 119.4, 124.5, 127.3, 129.6, 131.2, 137.3, 140.3, 142,2, 143.2; IR(neat) 3350, 2831, 1622, 1394, 1337, 1157, 918, 875, 758, 657 cm-1. HRMS (ESI) 511 (M + H+), calcd 511.2267, found 511.2266.