Subscribe to RSS
DOI: 10.1055/s-2002-19316
¹³ C NMR Analysis as a Useful Tool for Structural Assignment of Vinyl- and Dienyltin Derivatives
Publication History
Publication Date:
01 February 2007 (online)
Abstract
During the last decade, vinyl- and dienyltin derivatives have been extensively developed and used in organic synthesis. 1H NMR analysis of these compounds was the first analytical tool employed, together with 119Sn NMR, for the assignment of the E or Z stereochemistry of vinylstannyl derivatives. In this paper we want to show that 13C NMR is a powerful tool for structural analysis of vinyl- and dienyltin compounds. Chemical shifts and 13C-119-117Sn coupling constants are reported for several examples. In all cases described, the ³ J 13C - 119-117Sn values give the most definitive argument for structural assignment. ¹ J, ² J and ³ J 13C-119-117Sn coupling constants are also reported, along with the α, β, γ, and δ effects of the stannyl group. When the vinyltin function is functionalized with a heteroatomic substituant, some important changes occur in the chemical shifts and coupling constants. Some examples are given in the α-oxygen, -sulfur, -halogen, -silyl, and -tin substituted vinyltin series.
Key words
vinyltin - dienyltin - chemical shifs - coupling constants - heterosubstituted vinyltin
- 1
Pereyre M.Quintard J.-P.Rahm A. Tin in Organic Synthesis Butterworths; London: 1987. -
2a
Dodrell D.Burfitt I.Kitching W.Bullpitt M.Lee CH.Mynott RJ.Considine JL.Kuivlila HG.Sarma RH. J. Am. Chem. Soc. 1974, 96: 1640 -
2b
Kitching W. Org. Magn. Reson. 1982, 20: 123 -
2c
Rahm A.Grimeau J.Petraud M.Barbe B. J. Organomet. Chem. 1985, 286: 297 -
3a
Smith PJ.Tupciauskas A. Annual Reports on NMR Spectroscopy Vol. 8, Chemical Shifts of ¹¹9Sn Nuclei in Organotin Compounds:Webb GA. Academic Press; New York: 1978. p.291 -
3b
Wrackmeyer B. Annual Reports on NMR Spectroscopy Vol. 16, ¹¹9Sn-NMR Parameters:Webb GA. Academic Press; New York: 1985. p.73 -
3c
Petrosyan VS. Progress in Nuclear Magnetic Resonance Spectroscopy Vol. 11, NMR Spectra and Structures of Organotin Compounds:Emsley JW.Feeney J.Sutcliffe LH. Pergamon Press; New York: 1976. 115. p.1976 -
3d
Mitchell TN.Nettelbeck C. Magn. Reson. Chem. 1987, 25: 879 -
3e
Wrackmeyer B.Guldner G.Abu-Orabi ST. Tetrahedron 1989, 45: 1119 -
3f
Denmark SE.Weber EJ.Wilson TM. Tetrahedron 1989, 45: 1053 -
3g
Nativi C.Taddeï M. Tetrahedron 1989, 45: 1131 - 4
Quintard J.-P.Degueil-Castaing M.Dumartin G.Barbe B.Petraud M. J. Organomet. Chem. 1982, 234: 270 ; and references therein - 5
Singh GJ. J. Organomet. Chem. 1975, 99: 251 -
6a
Leusink AJ.Marsman JW.Budding HA.Noltes JG.Van Der Kerk GJM. Recl. Trav. Chim. Pays-Bas 1965, 84: 567 -
6b
Leusink AJ.Marsman JW.Budding HA. Recl. Trav. Chim. Pays-Bas 1965, 84: 689 -
6c
Leusink AJ.Budding HA.Marsman JW. J. Organomet. Chem. 1967, 9: 285 -
6d
Leusink AJ.Budding HA.Drenth W. J. Organomet. Chem. 1967, 9: 295 -
8a
Breitmaier E.Woelter W. Carbon- 13 NMR Spectroscopy 3rd ed.: VCH; New York: 1987. -
8b
Stothers JB. Carbon- 13 NMR Spectroscopy Academic Press; London: 1972. -
9a
Mitchell TN. J. Organomet. Chem. 1973, 59: 189 -
9b
Kuivila HG.Considine JL.Sarma RH.Minott RJ. J. Organomet. Chem. 1976, 111: 179 -
9c
Mitchell TN. Org. Magn. Reson. 1976, 8: 34 - 10
Ardisson J.Férézou J.-P.Li Y.Liu LW.Pancrazi A. Bull. Soc. Chim. Fr. 1992, 129: 401 - 11
Betzer J.-F.Delaloge F.Muller B.Pancrazi A.Prunet J. J. Org. Chem. 1997, 62: 7768 - 12
Barabas A.Botar AA.Gocan A.Popovici N.Hodosan F. Tetrahedron 1978, 34: 2191 - 13
Jacobs MF.Suthers BD.Hübener A.Kitching W. J. Chem. Soc., Perkin Trans. 1 1995, 901 -
14a
Grover SH.Stothers JB. Can. J. Chem. 1974, 52: 870 -
14b
Beierbeck H.Saunders JK. Can. J. Chem. 1976, 54: 2985 - 15
Thibonnet J.Launay V.Abarbri M.Duchêne A.Parrain J.-L. Tetrahedron Lett. 1998, 39: 4277 -
16a
Launay V.Beaudet I.Quintard J.-P. Synlett 1997, 821 -
16b
Launay V.Beaudet I.Quintard J.-P. Bull. Soc. Chim. Fr. 1997, 134: 937 -
16c
Suzenet F.Parrain J.-L.Quintard J.-P. Eur. J. Org. Chem. 1999, 2957 -
16d
Parrain J.-L.Beaudet I.Duchêne A.Watrelot S.Quintard J.-P. Tetrahedron Lett. 1993, 3 4: 5445 -
16e
Beaudet I.Parrain J.-L.Quintard J.-P. Tetrahedron Lett. 1991, 32: 6333 -
16f
Parrain J.-L.Duchêne A.Quintard J.-P. Tetrahedron Lett. 1990, 31: 1857 -
16g
Suzenet F. PhD Thesis Nantes; France: 1998. -
17a
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A. Synlett 1990, 766 -
17b
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A. Synlett 1991, 614 -
17c
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A.Porteu F. Bull. Soc. Chim. Fr. 1994, 131: 865 -
17d
Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A. Bull. Soc. Chim. Fr. 1995, 132: 428 -
18a
Ardisson J.Férézou J.-P.Julia M.Pancrazi A. Tetrahedron Lett. 1987, 28: 2001 -
18b
Ardisson J.Férézou J.-P.Julia M.Li Y.Liu LW.Pancrazi A. Bull. Soc. Chim. Fr. 1992, 129: 387 -
19a
Betzer J.-F.Lallemand JY.Pancrazi A. Synthesis 1998, 522 -
19b
Betzer J.-F.Ardisson J.Lallemand J.-Y.Pancrazi A. Tetrahedron Lett. 1997, 38: 2279 - 20
Betzer J.-F.Pancrazi A. Synthesis 1999, 629 -
21a
Anies C.Pancrazi A.Lallemand J.-Y. Bull. Soc. Chim. Fr. 1997, 134: 183 -
21b
Anies C.Pancrazi A.Lallemand J.-Y.Prangé T. Bull. Soc. Chim. Fr. 1997, 134: 203 -
21c
Anies C.Billot L.Lallemand J.-Y.Pancrazi A. Tetrahedron Lett. 1995, 40: 7247 - 22
Khrimyan AP.Garibyan OA.Panosyan GA.Mailyan NS.Kinoyan FS.Makaryan GM.Bananyan SO. Russ. J. Org. Chem. 1993, 29: 1961 - 23
Betzer J.-F.Pancrazi A. Synlett 1998, 1129 -
24a
Le Menez P.Fargeas V.Poisson J.Ardisson J.Lallemand J.-Y.Pancrazi A. Tetrahedron Lett. 1994, 42: 7767 -
24b
Le Menez P.Firmo N.Fargeas V.Ardisson J.Pancrazi A. Synlett 1994, 995 -
24c
Le Menez P.Berque I.Fargeas V.Ardisson J.Pancrazi A. Synlett 1994, 998 -
24d
Le Menez P.Fargeas V.Berque I.Poisson J.Ardisson J.Lallemand J.-Y.Pancrazi A. J. Org. Chem. 1995, 60: 3592 -
24e
Fargeas V.Le Menez P.Berque I.Ardisson J.Pancrazi A. Tetrahedron 1996, 52: 6613 - 25
Thibonnet J. PhD Thesis Faculté des Sciences et Techniques, Tours; France: 1999. - 26
Casson S.Kocienski P. Synthesis 1993, 1133 -
27a
Magriotis PA.Doyle TJ.Kim KD. Tetrahedron Lett. 1990, 31: 2541 -
27b
Magriotis PA.Brown JT.Scott ME. Tetrahedron Lett. 1991, 32: 5047 -
27c
Magriotis PA.Scott ME.Kim KD. Tetrahedron Lett. 1991, 32: 6085 - 28
Pimm A.Kocienski P.Street SDA. Synlett 1992, 886 - 30
Petrosyan VS. Progress in Nuclear Magnetique Resonance Spectroscopy Vol. 11:Emsley JW.Feeney J.Sutcliffe LH. Pergamon Press; New York: 1976. - 31
Lautens M.Huboux AH. Tetrahedron Lett. 1990, 31: 3105 - 32
Mitchell TN.Wickenkamp R.Amamria A.Dicke R.Schneider U. J. Org. Chem. 1987, 52: 4868 -
33a
Mitchell TN.Amamria A. J. Organomet. Chem. 1983, 252: 47 -
33b
Mitchell TN.Nettelbeck C. Mag. Reson. Chem. 1987, 25: 879 - 34
Piers E.Tillyer RD. Can. J. Chem. 1996, 74: 2048 - 35
Piers E.Skerlj RT. Can. J. Chem. 1994, 72: 2468 - 36
Suzenet F.Blart E.Quintard J.-P. Synlett 1998, 879
References
Practical information: in general the central 1H signal is associated with two satellites corresponding to both 119Sn and 117Sn isotopes (for J 1H-119,117Sn > 70.0-100.0 Hz) but when J 1H 119,117Sn < 70.0-100.0 Hz, the two pairs of satellites are unresolved and only one coupling constant can be measured.
29Le Menez, P.; Brion, J.-D.; Pancrazi, A.; Ardisson, J. unpublished results.