Seminars in Neurosurgery 2001; 12(3): 261-272
DOI: 10.1055/s-2001-33617
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Pathophysiology of Pituitary Tumors

Shereen Ezzat1,4,5 , Sylvia L. Asa2,3,5
  • 1Department of Medicine, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
  • 3Department of Pathology, University Health Network, Toronto, Ontario, Canada
  • 4Department of Medicine, Mount Sinai Hospital
  • 5Freeman Center for Endocrine Oncology, Toronto, Ontario, Canada
Further Information

Publication History

Publication Date:
27 August 2002 (online)

ABSTRACT

Numerous factors have been shown to govern pituitary cell proliferation; these various hypophysiotropic hormones and growth factors (GFs) likely play a role as promoters of tumor cell growth in genetically transformed cells. The clonal composition of pituitary adenomas attests to the molecular basis of pituitary tumorigenesis; however, the oncogenes and tumor suppressor genes that are implicated in the transformation events for the vast majority of pituitary tumors remain unknown. Mutations that have been identified in other human malignancies are restricted to a very small subset of pituitary neoplasms implicating novel genetic and/or epigenetic alterations. This review details some of the currently known alterations of GFs and their receptors that have been implicated in pituitary tumorigenesis. Some of the epigenetic changes noted in nuclear components that govern cell cycle control are also reviewed. The emerging knowledge from these studies is shedding new light not only on the pathogenesis of pituitary tumors but on novel mechanisms in the broader context of human neoplasia.

REFERENCES

  • 1 Abbass S AA, Asa S L, Ezzat S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas.  J Clin Endocrinol Metab . 1997;  82 1160-1166
  • 2 Abel E D, Boers M E, Pazos-Moura C. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system.  J Clin Invest . 1999;  104 291-300
  • 3 Adams E F, Bhuttacharji S C, Halliwell C LJ. Effect of pancreatic growth hormone releasing factors on GH secretion by human somatotrophic pituitary tumours in cell culture.  Clin Endocrinol (Oxf) . 1984;  21 709-718
  • 4 Adams E F, Winslow C LJ, Mashiter K. Pancreatic growth hormone releasing factor stimulates growth hormone secretion by pituitary cells.  Lancet . 1983;  1 1100-1101
  • 5 Alexander J M, Biller B MK, Bikkal H. Clinically nonfunctioning pituitary tumors are monoclonal in origin.  J Clin Invest . 1990;  86 336-340
  • 6 Alexander J M, Jameson J L, Bikkal H A. The effects of activin on follicle-stimulating hormone secretion and biosynthesis in human glycoprotein hormone-producing pituitary ademonas.  J Clin Endocrinol Metab . 1991;  72 1261-1267
  • 7 Alexander J M, Swearingen B, Tindal G T. Human pituitary adenomas express inhibin subunit and follistatin messenger ribonucleic acids.  J Clin Endocrinol Metab . 1995;  80 147-152
  • 8 Asa S L. Tumors of the pituitary gland. In: Atlas of Tumor Pathology Third Series, Fascicle 22, Rosai, J, ed. Washington, DC: Armed Forces Institute of Pathology;1998
  • 9 Asa S L, Kelly M A, Grandy D K. Pituitary lactotroph hyperplasia dopamine D2 receptor-deficient mice.  Endocrinology . 1999;  140 5348-5355
  • 10 Asa S L, Kovacs K, Stefaneanu L. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone.  Endocrinology . 1992;  131 2083-2089
  • 11 Asa S L, Somers K, Ezzat S. The MEN-1 gene is rarely down-regulated in pituitary adenomas.  J Clin Endocrinol Metab . 1998;  83 3210-3212
  • 12 Baker S J, Markowitz S, Fearon E R. Suppression of human colorectal carcinoma cell growth by wild-type p53.  Science . 1990;  249 912-915
  • 13 Barbacid M A. Ras genes.  Annu Rev Biochem . 1987;  56 779-827
  • 14 Bertherat J, Chanson P, Dewailly D. Somatostatin receptors, adenylate cyclase activity, and growth hormone (GH) response to octreotide in GH-secreting adenomas.  J Clin Endocrinol Metab . 1993;  77 1577-1583
  • 15 Bevan J S, Burke C W, Esiri M M. Studies of two thyrotrophin-secreting pituitary adenomas: evidence for dopamine receptor deficiency.  Clin Endocrinol (Oxf) . 1989;  31 59-70
  • 16 Billestrup N, Swanson L W, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro Proc Natl Acad Sci USA .  1986;  83 6854-6857
  • 17 Bos J L. ras oncogenes in human cancer: a review.  Cancer Res . 1989;  49 4682-4689
  • 18 Buckley N, Bates A S, Broome J C. p53 protein accumulation in Cushings adenomas and invasive non-functional adenomas.  J Clin Endocrinol Metab . 1994;  79 1513-1516
  • 19 Cai W Y, Alexander J M, Hedley-Whyte E T. Ras mutations in human prolactinomas and pituitary carcinomas.  J Clin Endocrinol Metab . 1994;  78 89-93
  • 20 Chandrasekharappa S C, Guru S C, Manickam P. Positional cloning of the gene for multiple endocrine neoplasia-type 1.  Science . 1997;  276 404-407
  • 21 Childs G V, Rougeau D, Unabia G. Corticotropin-releasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotropes.  Endocrinology . 1995;  136 1595-1602
  • 22 Clayton R N, Pfeifer M, Atkinson A B. Different patterns of allelic loss (loss of heterozygosity) in recurrent human pituitary tumors provide evidence for multiclonal origins.  Clin Cancer Res . 2000;  6 3973-3982
  • 23 Cryns V L, Alexander J M, Klibanski A. The retinoblastoma gene in human pituitary tumors.  J Clin Endocrinol Metab . 1993;  77 644-646
  • 24 Danila D C, Inder W J, Zhang X. Activin effects on neoplastic proliferation of human pituitary tumors.  J Clin Endocrinol Metab . 2000;  85 1009-1015
  • 25 Dong Q, Brucker-Davis F, Weintraub B D. Screening of candidate oncogenes in human thyrotroph tumors: absence of activating mutations of the Gαq, Gα11, Gα, or thyrotropin-releasing hormone receptor genes.  J Clin Endocrinol Metab . 1996;  81 1134-1140
  • 26 Dougall W C, Quan X, Peterson N C. The neu-oncogene: signal transduction pathways, transformation mechanisms and evolving therapies.  Oncogene . 1994;  9 2109-2123
  • 27 Dowdy S F, Hinds P W, Louie K. Physical interaction of the retinoblastoma protein with human D cyclins.  Cell . 1993;  73 499-511
  • 28 Ezzat S. Hypophysiotropic regulation of anterior pituitary hormones: cellular and molecular mechanisms. In: Selman WR, ed. Neuroendocrinology Baltimore: Williams & Wilkins; 1992: 3-18
  • 29 Ezzat S, Asa S L, Stefaneanu L. Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid.  J Clin Endocrinol Metab . 1994;  78 555-560
  • 30 Ezzat S, Kontogeorgos G, Redelmeier D A. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide.  Eur J Endocrinol . 1995;  133 686-690
  • 31 Ezzat S, Melmed S. The role of growth factors in the pituitary.  J Endocrinol Invest . 1990;  13 691-698
  • 32 Ezzat S, Walpola I A, Ramyar L. Membrane-anchored expression of transforming growth factor-α in human pituitary adenoma cells.  J Clin Endocrinol Metab . 1995;  80 534-539
  • 33 Ezzat S, Zheng L, Smyth H S. The c-erbB-2/neu proto-oncogene in human pituitary tumours.  Clin Endocrinol (Oxf) . 1997;  46 599-606
  • 34 Ezzat S, Zheng L, Zhu X-F, Wu G E, Asa S L. Authentic recapitulation of pituitary tumorigenesis by targeted expression of a human pituitary tumor-derived isoform of fibroblast growth factor receptor 4.  J Clin Invest . 2002;  109 69-78
  • 35 Fero M L, Rivkin M, Tasch M. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice.  Cell . 1996;  85 733-744
  • 36 Filetti S, Rapoport B, Aron D C. TSH and TSH-subunit production by human thyrotrophic tumour cells in monolayer culture.  Acta Endocrinol(Copenh) . 1982;  99 224-231
  • 37 Fisher D A, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals.  Endocr Rev . 1990;  11 418-442
  • 38 Friedman E, Adams E F, Hoog A. Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors.  J Clin Endocrinol Metab . 1994;  78 568-574
  • 39 Gesundheit N, Petrick P A, Nissim M. Thyrotropin-secreting pituitary adenomas: clinical and biochemical heterogeneity. Case reports and follow-up of nine patients [see comments].  Ann Intern Med . 1989;  111 827-835
  • 40 Gicquel C, LeBouc Y, Luton J-P. Monoclonality of corticotroph macroadenomas in Cushing's disease.  J Clin Endocrinol Metab . 1992;  75 472-475
  • 41 Gilman A G. G proteins: transducers of receptor-generated signals.  Annu Rev Biochem . 1987;  56 615-649
  • 42 Gittoes N JL, McCabe C J, Verhaeg J. Thyroid hormone and estrogen receptor expression in normal pituitary and nonfunctioning tumors of the anterior pituitary.  J Clin Endocrinol Metab . 1997;  82 1960-1967
  • 43 Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity.  FASEB J . 1992;  6 3362-3369
  • 44 Godfrey P, Rahal J, Beamer W. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function.  Nature Genet . 1993;  4 227-232
  • 45 Goldman R, Levy R B, Peles E. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation.  Biochem J . 1990;  29 11024-11028
  • 46 Haddad G, Penabad J L, Bashey H M. Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas.  J Clin Endocrinol Metab . 1994;  79 1399-1403
  • 47 Harris P E, Alexander J M, Bikkal H A. Glycoprotein hormone α-subunit production in somatotroph adenomas with and without Gsα mutations.  J Clin Endocrinol Metab . 1992;  75 918-923
  • 48 Hartwell L, Kastan M. Cell cycle and cancer.  Science . 1994;  266 1821-1828
  • 49 Hashimoto K, Koga M, Motomura T. Identification of alternatively spliced messenger ribonucleic acid encoding truncated growth hormone-releasing hormone receptor in human pituitary adenomas.  J Clin Endocrinol Metab . 1995;  80 2933-2939
  • 50 Herman V, Drazin N Z, Gonsky R. Molecular screening of pituitary adenomas for gene mutations and rearrangements.  J Clin Endocrinol Metab . 1993;  77 50-55
  • 51 Herman V, Fagin J, Gonsky R. Clonal origin of pituitary adenomas.  J Clin Endocrinol Metab . 1990;  71 1427-1433
  • 52 Horvath E, Kovacs K. The adenohypophysis. In: Kovacs K, Asa SL, eds. Functional Endocrine Pathology Boston: Blackwell Scientific 1991: 245-281
  • 53 Hu N, Gutsmann A, Herbert D C. Heterozygous Rb-1delta/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance.  Oncogene . 1994;  9 1021-1027
  • 54 Ikeda H, Mitsuhashi T, Kubota K. Epidermal growth factor stimulates growth hormone secretion from superfused rat adenohypophyseal fragments.  Endocrinology . 1984;  115 556-558
  • 55 Jacks T, Fazeli A, Schmitt E M. Effects of an Rb mutation in the mouse.  Nature . 1992;  359 295-300
  • 56 Jaffrain-Rea M L, Ferretti E, Toniato E. p16 (INK4a, MTS-1) gene polymorphism and methylation status in human pituitary tumours.  Clin Endocrinol (Oxf) . 1999;  51 317-325
  • 57 Jin L, Qian X, Kulig E. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.  Am J Pathol . 1997;  151 509-519
  • 58 Jin L, Qian X, Kulig E. Prolactin receptor messenger ribonucleic acid in normal and neoplastic human pituitary tissues.  J Clin Endocrinol Metab . 1997;  82 963-968
  • 59 Joubert (Bression) D, Benlot C, Lagoguey A. Normal and growth hormone (GH)-secreting adenomatous human pituitaries release somatostatin and GH-releasing hormone.  J Clin Endocrinol Metab . 1989;  68 572-577
  • 60 Kanasaki H, Fukunaga K, Takahashi K. Involvement of p38 mitogen-activated protein kinase activation in bromocriptine-induced apoptosis in rat pituitary GH3 cells.  Biol Reprod . 2000;  62 1486-1494
  • 61 Karga H J, Alexander J M, Hedley-Whyte E T. Ras mutations in human pituitary tumors.  J Clin Endocrinol Metab . 1992;  74 914-919
  • 62 Kawakita S, Asa S L, Kovacs K. Effects of growth hormone-releasing hormone (GHRH) on densely granulated somatotroph adenomas and sparsely granulated somatotroph adenomas in vitro: a morphological and functional investigation.  J Endocrinol Invest . 1989;  12 443-448
  • 63 Kelijman M, Williams T C, Downs T R. Comparison of the sensitivity of growth hormone secretion to somatostatin in vivo and in vitro in acromegaly.  J Clin Endocrinol Metab . 1988;  67 958-963
  • 64 Kelly M A, Rubinstein M, Asa S L. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice.  Neuron . 1997;  19 103-113
  • 65 Kiyokawa H, Kineman R D, Manova-Todorova K O. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1 .  Cell . 1996;  85 721-732
  • 66 Koga M, Nakao H, Arao M. Demonstration of specific dopamine receptors on human pituitary adenomas.  Acta Endocrinol (Copenh). 1987;  114 595-602
  • 67 Kovacs K, Stefaneanu L, Ezzat S. Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study.  Arch Pathol Lab Med . 1994;  118 562-565
  • 68 Landis C A, Harsh G, Lyons J. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein.  J Clin Endocrinol Metab . 1990;  71 1416-1420
  • 69 Le Dafniet M, Blumberg-Tick J, Gozlan H. Altered balance between thyrotropin-releasing hormone and dopamine in prolactinomas and other pituitary tumors compared to normal pituitaries.  J Clin Endocrinol Metab . 1989;  69 267-271
  • 70 Le Dafniet M, Blumberg-Tick J, Yuan Li J. Release of thyrotropin releasing hormone (TRH) from human prolactin-secreting pituitary adenoma cells. Modulation by dopamine [Fre].  C R Acad Sci [III] . 1988;  306 129-134
  • 71 Le Dafniet M, Grouselle D, Li J Y. Evidence of thyrotropin-releasing hormone (TRH) and TRH-binding sites in human nonsecreting pituitary adenomas.  J Clin Endocrinol Metab . 1987;  65 1014-1019
  • 72 Le Dafniet M, Lefebvre P, Barret A. Normal and adenomatous human pituitaries secrete thyrotropin-releasing hormone in vitro: modulation by dopamine, haloperidol, and somatostatin.  J Clin Endocrinol Metab . 1990;  71 480-486
  • 73 LeRiche V, Asa S L, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness.  J Clin Endocrinol Metab . 1996;  81 656-662
  • 74 Levine A J, Momand J, Finlay C A. The p53 tumour suppressor gene.  Nature . 1991;  315 453-456
  • 75 Levy A, Hall L, Yeundall W A. p53 gene mutations in pituitary adenomas: rare events.  Clin Endocrinol (Oxf) . 1994;  41 809-814
  • 76 Levy A, Lightman S L. Growth hormone-releasing hormone transcripts in human pituitary adenomas.  J Clin Endocrinol Metab . 1992;  74 1474-1476
  • 77 Levy L, Bourdais J, Mouhieddine B. Presence and characterization of the somatostatin precursor in normal human pituitaries and in growth hormone secreting adenomas.  J Clin Endocrinol Metab . 1993;  76 85-90
  • 78 Lin S, Lin C, Gukovsky I. Molecular basis of the little mouse phenotype and implications for cell type-specific growth.  Nature . 1993;  364 208-213
  • 79 Lloyd R V, Jin L, Chang A. Morphologic effects of hGRH gene expression on the pituitary, liver, and pancreas of MT-hGRH transgenic mice.  An in situ hybridization analysis. Am J Pathol . 1992;  141 895-906
  • 80 Loras B, Li J Y, Durand A. GRF et adénomes somatotropes humains.  Corrélations in vivo et in vitro entre la libération de GH et les aspects morphologiques et immunocytochimiques. Ann Endocrinol (Paris) . 1985;  46 373-382
  • 81 Lyons J, Landis C A, Harsh G. Two G protein oncogenes in human endocrine tumors.  Science . 1990;  249 655-659
  • 82 Marx S J. Familial multiple endocrine neoplasia type 1. Mutation of a tumor suppressor gene.  Trends Endocrinol Metab . 1989;  1 76-82
  • 83 May V, Wilber J F, U'Prichard D C. Persistence of immunoreactive TRH and GnRH in long-term primary anterior pituitary cultures.  Peptides . 1987;  8 543-558
  • 84 McAndrew J, Paterson A J, Asa S L. Targeting of transforming growth factor-α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas.  Endocrinology . 1995;  136 4479-4488
  • 85 McCabe C J, Gittoes N J, Sheppard M C. Thyroid receptor alpha1 and alpha2 mutations in nonfunctioning pituitary tumors.  J Clin Endocrinol Metab . 1999;  84 649-653
  • 86 Mei J, Huang X, Zhang P. Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts.  Curr Biol . 2001;  11 1197-1201
  • 87 Miller G M, Alexander J M, Bikkal H A. Somatostatin receptor subtype gene expression in pituitary adenomas.  J Clin Endocrinol Metab . 1995;  80 1386-1392
  • 88 Murdoch G H, Potter E, Nicolaisen A K. Epidermal growth factor rapidly stimulates prolactin gene transcription.  Nature . 1982;  300 192-194
  • 89 Nakayama K, Ishida N, Shirane M. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors.  Cell . 1996;  85 707-720
  • 90 Nelson K G, Takahashi T, Lee D C. Transforming growth factor-α is a potential medicator of estrogen action in the mouse uterus.  Endocrinology . 1992;  131 1657-1664
  • 91 Nicolis G, Shimshi M, Allen C. Gonadotropin-producing pituitary adenoma in a man with long-standing primary hypogonadism.  J Clin Endocrinol Metab . 1988;  66 237-241
  • 92 Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG).  Mol Endocrinol . 1997;  11 433-441
  • 93 Pei L, Melmed S, Scheithauer B. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: Evidence for a chromosome 13 tumor suppressor gene other than RB Cancer Res .  1995;  55 1613-1616
  • 94 Pei L, Melmed S, Scheithauer B. H-ras mutations in human pituitary carcinoma metastases.  J Clin Endocrinol Metab . 1994;  78 842-846
  • 95 Peillon F, Le Dafniet M, Garnier P. Neurohormones coming from the normal and tumoral human anterior pituitary. Secretion and regulation in vitro [Fre].  Pathologie Biologie . 1989;  37 840-845
  • 96 Peillon F, Liappi G, Garnier P. In vitro secretion of somatostatin (SRIH) by human adenomatous somatotropic cells. Relation with somatotropic hormone (GH) release and modulation by thyroliberin (TRH) [Fre].  C R Acad Sci [III] . 1988;  306 161-166
  • 97 Penabad J L, Bashey H M, Asa S L. Decreased follistatin gene expression in gonadotroph adenomas.  J Clin Endocrinol Metab . 1996;  81 3397-3403
  • 98 Plowman G D, Culouscou J-M, Whitney G S. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family.  Proc Natl Acad Sci USA . 1993;  90 1746-1750
  • 99 Polk D H, Ervin M G, Padbury J F. Epidermal growth factor acts as a corticotropin-releasing factor in chronically catheterized fetal lambs.  J Clin Invest . 1987;  79 984-988
  • 100 Qian X, LeVea C M, Freeman J K. Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation.  Proc Natl Acad Sci USA . 1994;  91 1500-1504
  • 101 Ramsdell J S, Tashjian A H. Thyrotropin-releasing hormone and epidermal growth factor stimulate prolactin synthesis by a pathway(s) that differs from that used by phorbol esters: dissociation of actions by calcium dependency and additivity.  Endocrinology . 1985;  117 2050-2060
  • 102 Reubi J C, Landolt A M. The growth hormone responses to octreotide in acromegaly correlate with adenoma somatostatin receptor status.  J Clin Endocrinol Metab . 1989;  68 844-850
  • 103 Roh M, Paterson A J, Asa S L. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice.  Mol Endocrinol . 2001;  15 600-613
  • 104 Saeger W. Die Morphologie der paraadenomatösen Adenohypophyse. Ein Beitrag zur Pathogenese der Hypophysenadenome.  Virchows Arch [Pathol Anat] . 1977;  372 299-314
  • 105 Sano T, Asa S L, Kovacs K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations.  Endocr Rev . 1988;  9 357-373
  • 106 Schechter J, Goldsmith P, Wilson C. Morphological evidence for the presence of arteries in human prolactinomas.  J Clin Endocrinol Metab . 1988;  67 713-719
  • 107 Scheithauer B W, Kovacs K, Randall R V. Pituitary gland in hypothyroidism. Histologic and immunocytologic study.  Arch Pathol Lab Med . 1985;  109 499-504
  • 108 Schulte H M, Oldfield E H, Allolio B. Clonal composition of pituitary adenomas in patients with Cushing's disease: Determination by X-chromosome inactivation analysis.  J Clin Endocrinol Metab . 1991;  73 1302-1308
  • 109 Senogles S E, Benovic J L, Amlaiky N. The D2 receptor of anterior pituitary is functionally associated with a pertussis toxin-sensitive guanine nucleotide binding protein.  J Biol Chem . 1987;  262 4860-4867
  • 110 Sherr C J, Roberts J M. Inhibitors of mammalian G1 cyclin-dependent kinases.  Genes DeV . 1995;  9 1149-1163
  • 111 Snyder P J. Gonadotroph cell adenomas of the pituitary.  Endocr Rev . 1985;  6 552-563
  • 112 Spada A, Arosio M, Bochicchio D. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase.  J Clin Endocrinol Metab . 1990;  71 1421-1426
  • 113 Spada A, Bassetti M, Martino E. In vitro studies on TSH secretion and adenylate cyclase activity in a human TSH-secreting pituitary adenoma. Effects of somatostatin and dopamine.  J Endocrinol Invest . 1985;  8 193-198
  • 114 Spada A, Elahi F R, Arosio M. Lack of desensitization of adenomatous somatotrophs to growth hormone-releasing hormone in acromegaly.  J Clin Endocrinol Metab . 1987;  64 585-591
  • 115 Spada A, Vallar L, Faglia G. G protein oncogenes in pituitary tumors.  Trends Endocrinol Metab . 1992;  3 355-360
  • 116 Sumi T, Stefaneanu L, Kovacs K. Immunohistochemical study of p53 protein in human and animal pituitary tumors.  Endocr Pathol . 1993;  4 95-99
  • 117 Takino H, Herman V, Weiss M. Purine-binding factor (nm23) gene expression in pituitary tumors: Marker of adenoma invasiveness.  J Clin Endocrinol Metab . 1995;  80 1733-1738
  • 118 Tanaka C, Yoshimoto K, Yang P. Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas.  J Clin Endocrinol Metab . 1997;  82 3141-3147
  • 119 Thapar K, Kovacs K, Stefaneanu L. Overexpression of the growth-hormone-releasing hormone gene in acromegaly-associated pituitary tumors. An event associated with neoplastic progression and aggressive behavior.  Am J Pathol . 1997;  151 769-784
  • 120 Thorner M O, Perryman R L, Cronin M J. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor.  J Clin Invest . 1982;  70 965-977
  • 121 Tordjman K, Stern N, Ouaknine G. Activating mutations of the Gs α-gene in nonfunctioning pituitary tumors.  J Clin Endocrinol Metab . 1993;  77 765-769
  • 122 Vallar L, Meldolesi J. Mechanisms of signal transduction at the dopamine D2 receptor.  Trends Pharmacol Sci . 1989;  10 74-77
  • 123 Wang C J, Howng S L, Lin K H. Expression of thyroid hormone receptors in human pituitary tumor cells.  Cancer Lett . 1995;  91 79-83
  • 124 White B A, Bancroft F C. Epidermal growth factor and thyrotropin-releasing hormone interact synergistically with calcium to regulate prolactin mRNA levels.  J Biol Chem . 1983;  258 4618-4622
  • 125 White M C, Daniels M, Kendall-Taylor P. Effects of growth hormone-releasing factor (1-44) on growth hormone release from human somatotrophinomas in vitro: interaction with somatostatin, dopamine, vasoactive intestinal peptide and cycloheximide.  J Endocrinol . 1985;  105 269-276
  • 126 Williamson E A, Ince P G, Harrison D. G-Protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas.  Eur J Clin Invest . 1995;  25 128-131
  • 127 Williamson E A, Daniels M, Foster S. Gsα and Gi2α mutations in clinically non-functioning pituitary tumours.  Clin Endocrinol (Oxf) . 1994;  41 815-820
  • 128 Wood D F, Johnston J M, Johnston D G. Dopamine, the dopamine D2 receptor and pituitary tumours.  Clin Endocrinol (Oxf) . 1991;  35 455-466
  • 129 Yamada M, Hashimoto K, Satoh T. A novel transcript for the thyrotropin-releasing hormone receptor in human pituitary and pituitary tumors.  J Clin Endocrinol Metab . 1997;  82 4224-4228
  • 130 Yamada M, Monden T, Satoh T. Pituitary adenomas of patients with acromegaly express thyrotropin-releasing hormone receptor messenger RNA cloning and functional expression of the human thyrotropin-releasing hormone receptor gene.  Biochem Biophys Res Commun . 1993;  195 737-745
  • 131 Yan G, Wang F, Fukabori Y. Expression and transformation of a variant of the heparin-binding fibroblast growth factor receptor (flg) gene resulting from splicing of the exon at alternate 3′-acceptor site.  Biochem Biophys Res Commun . 1992;  183 423-430
  • 132 Ying S-Y. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone.  Endocr Rev . 1988;  9 267-293
  • 133 Yoshimoto K, Iwahana H, Fukuda A. Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain reaction-single strand conformation polymorphism.  Cancer Res . 1992;  52 5061-5064
  • 134 Zhu J, Leon S P, Beggs A H. Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus.  J Clin Endocrinol Metab . 1994;  78 922-927
  • 135 Zhuang Z, Ezzat S, Vortmeyer A O. Mutations of the MEN1 tumor suppressor gene in pituitary tumors.  Cancer Res . 1997;  57 5446-5451
  • 136 Zou H, McGarry T J, Bernal T. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis.  Science . 1999;  285 418-422