Int J Sports Med 2001; 22(7): 467-481
DOI: 10.1055/s-2001-17605
Review/Physiology and Biochemistry

© Georg Thieme Verlag Stuttgart · New York

Physiology and Pathophysiology of the Serotonergic System and its Implications on Mental and Physical Performance. Part I

H. K. Strüder1 , H. Weicker2
  • 1Institute of Theorie and Practice of Training and Movement, German Sport University, Cologne, Germany
  • 2Department of Sports Medicine, Ruprecht-Karls-University, Heidelberg, Germany
Further Information

Publication History

Publication Date:
04 October 2001 (online)

Serotonin (5-HT), one of the evolutionary oldest central neurotransmitters, regulates the most extensive modulatory behavioral system in the brain of vertebrates. 5-HT projections are influenced by extrinsic and intrinsic impulses from different cortical brain areas, which reach Raphe nuclei over feedback loops, containing external and internal body information about planning, evaluation, motivation or excitation. Serotonergic neurotransmission adjusts neuromodulation with consecutive adequate stimulation of the neuronal network. This depends on appropriate equilibration of presynaptic 5-HT storage and release but also on 5-HT reuptake from synaptic cleft by 5-HT transporters. The associated pre and postsynaptic 5-HT receptor cooperation, postsynaptic second messenger response and phosphoinositide signaling mediated by postsynaptic 5-HT2 receptor subpopulation alter signal transduction in which myristolated alanine rich C kinase substrate is prominently involved in regulation of further central 5-HT areas in the brain and corresponding functional neuronal changes. Even though the central function of 5-HT neurotransmission is dominating in the multifold behavioral regulation, peripheral concentration of tryptophan (TRP) adjusted by hepatic and non-hepatic TRP pyrrolase, TRP liberation from albumin especially by adrenergic stimulation of free fatty acids, TRP passage across the blood-brain barrier and TRP hydroxylase activity are also important for appropriate 5-HT neurotransmission as they affect central 5-HT synthesis. The high adaptability of 5-HT neurotransmission is able to compensate neuromodular dysfunctions in the brain by mechanisms which mediate 5-HT biosynthesis, release, reuptake, pre and postsynaptic receptor stimulation with the respective second messenger response and signal transduction to various areas of the brain which are involved in regulation of behavior, mood, memory, learning and attenuation of obsession, depending on the different vigilance states of the subject. Adequate 5-HT system function supports regulation of intercommunicative neuronal transmission in the brain, which optimizes behavioral neuromodulation during and after transient disturbances of neuromodular behavior caused by stress-induced exertions, but also in permanent disorder such as major depression. Serotonergic neurotransmission improves the clinical course due to compensatory 5-HT impulse correction. This hypothetical interpretation of the serotonergic central neuromodular regulation and interaction with the neuronal network is supported by findings both in functional disturbances and persistent impairments in mental disorders. A comparison of the symptomatology in permanent and transient disturbance of brain neuromodulation enhances our basic knowledge on the regulative factors e. g. in endogenous depression and depressive behavioral changes after exhaustive exercise. This consideration exhibits that the interaction between altered central neuromodulation and peripheral metabolic and hormonal dysfunctions is able to differentiate the etiology of the symptoms. It is suggested that the central neuromodular disturbance of stress-induced causes might initiate the manifestation of the impairment. The theoretical background of this hypothesis is discussed in the present review.

References

  • 1 Abdul-Rahman A, Dahlgren N, Johansson B B, Siesjö B K. Increase in local cerebral blood flow induced by circulating adrenaline. Involvement of blood-brain barrier dysfunction.  Acta Physiol Scand. 1979;  107 227-232
  • 2 Aghajanian G K, Sprouse J S, Rasmussen K. Physiology of the midbrain serotonin system. In: Meltzer HY (ed) Psychopharmacology: the Third Generation of Progress New York; Raven 1987: 141-149
  • 3 Albert P R, Zhou Q Y, Van Tol H H, Bunzow J R, Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene.  J Biol Chem. 1990;  265 5825-5832
  • 4 Albinsson A, Palazidou E, Stephenson J, Andersson G. Involvement of the 5-HT2 receptor in the 5-HT receptor-mediated stimulation of prolactin release.  J Pharmacol. 1994;  251 157-161
  • 5 Arora R C, Meltzer H Y. Increased serotonin2 receptor binding as measured by 3H-LSD in the blood platelets of depressed patients.  Life Sci. 1989;  44 725-734
  • 6 Arora R C, Meltzer H Y. Serotonin2 receptor binding in blood platelets of schizophrenic patients.  Psychiatr Res. 1993;  47 111-119
  • 7 Atack J R, Broughton H B, Polack S J. Structure and mechanism of inositol monophosphate.  FEBS Lett. 1995;  361 1-7
  • 8 Badawy A AB. The functions and regulation of tryptophan pyrrolase.  Life Sci. 1977;  21 755-768
  • 9 Badawy A AB, Evans M. Inhibition of rat liver trypotphan pyrrolase activity and elevation of brain tryptophan concentration by administration of antidepressants.  Biochemical Pharmacology. 1981;  30 1211-1216
  • 10 Badawy A AB, Morgan J. Tryptophan and tryptophan pyrrolase in haem regulation.  Biochem J. 1982;  206 451-460
  • 11 Baldwin D, Rudge S. The role of serotonin in depression and anxiety. Intern Clin.  Psychopharmacology. 1995;  9 41-45
  • 12 Baumgarten H G, Grozdanovic Z. Die Rolle des Serotonins in der Verhaltensmodulation.  Fortschr Neurol Psychiat. 1995;  63 3-8
  • 13 Baumgarten H G, Grozdanovic Z. Psychopharmacology of central serotonergic systems.  Pharmacopschiat. 1995;  28 73-79
  • 14 Ben-Jonathan N, Laudon M, Garris P A. Novel aspects of posterior pituitary function: regulation of prolactin secretion.  Frontiers Neuroendocrinol. 1991;  12 231
  • 15 Benker G, Jaspers C, Häusler G, Reinwein D. Control of prolactin secretion.  Klin Wochenschr. 1990;  68 1157-1167
  • 16 Biegon A, Grinspoon A, Blumenfeld B, Bleich A, Apter A, Mester R. Increased serotonin 5-HT2 receptor binding in blood platelets of suicidal men.  Psychopharmacology. 1990;  100 165-167
  • 17 Biegon A, Weizman A, Karp L, Ram A, Tiano S, Wolff M. Serotonin 5-HT2 receptor binding on blood platelets - a peripheral marker for depression.  Life Sci. 1987;  41 2485-2492
  • 18 Blakely R D, Berson H E, Femeau Jr R T, Caron M G, Peek M M, Prince H K, Bradley C C. Cloning and expression of a functional serotonin transporter from rat brain.  Nature. 1991;  354 66-70
  • 19 Bloxam D L, Tricklebank M D, Patel A J, Curzon G. Effects of albumin, amino acids, and chlofibrate on the uptake of tryptophan by the rat brain.  J Neurochem. 1980;  34 43-49
  • 20 Boadle-Biber M C. Regulation of serotonin synthesis.  Prog Biophys Molec Biol. 1993;  60 1-15
  • 21 Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly P A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice.  Endocrine Rev. 1998;  19 225-268
  • 22 Calabresi P, Pisani A, Mercuri N B, Bernardi G. Lithium treatment blocks long-term synaptic depression in the striatum.  Neuron. 1993;  10 955-962
  • 23 Carlsson A, Lindqvist M. The effect of L-tryptophan and psychotropic drugs on the formation of 5-hydroxytryptophan in the mouse brain in vivo.  J Neural Transm. 1972;  34 23-43
  • 24 Chaouloff F. Physical exercise and brain monoamines: a review.  Acta Physiol Scand. 1989;  137 1-13
  • 25 Chaouloff F. Physiopharmacological interactions between stress hormones and central serotonergic systems.  Brain Res Rev. 1993;  18 1-32
  • 26 Chaouloff F. Effects of acute physical exercise on central serotonergic systems.  Med Sci Sports Exerc. 1997;  29 58-62
  • 27 Chaouloff F, Elghozi J L, Guezennec Y, Laude D. Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat.  Br J Pharmacol. 1985;  86 33-41
  • 28 Charig E M, Anderson I M, Robinson J M, Nutt D J, Cowen P J. L-Tryptophan and prolactin release: evidence for interaction between 5-HT1 and 5-HT2 receptors.  Human Psychopharmacol. 1986;  1 93-97
  • 29 Clemens J A, Roush M E, Fuller R W. Evidence that serotonin neurons stimulate secretion of prolactin releasing factor.  Life Sci. 1978;  22 2209-2213
  • 30 Cook E H, Arora R C, Anderson G M, Berry-Kravis E M, Yan S Y, Yeoh H C, Sklena P J, Charak D A, Leventhal B L. Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder.  Life Sci. 1993;  52 2005-2015
  • 31 Corrodi H, Fuxe K, Hökfelt T. The effect of immobilisation stress on the activity of central monoamine neurons.  Life Sci. 1968;  7 107-112
  • 32 Cowen P J, Geaney D P, Schachter M, Green R, Elliott J M. Desipramine treatment in normal subjects: effects on neuroendocrine responses to tryptophan and on platelet serotonin (5-HT)-related receptors.  Arch Gen Psychiatr. 1986;  43 61-67
  • 33 Curzon G, Friedel J, Knott P J. The effect of fatty acids on the binding of tryptophan to plasma proteins.  Nature. 1973;  242 198-200
  • 34 Da Prada M, Cesura A M, Launay J M, Richards J G. Platelets as a model for neurones?.  Experientia. 1988;  44 115-126
  • 35 Davids E, Lesch K P. Der 5-HT1A-Rezeptor: Ein neues Wirkprinzip psychopharmakologischer Therapiestrategien?.  Fortschr Neurol Psychiat. 1996;  64 460-472
  • 36 Davis J M, Bailey S P. Possible mechanisms of central nervous system fatigue during exercise.  Med Sci Sports Exerc. 1997;  29 45-57
  • 37 De Courcelles D DC, Leysen J E, De Clerk F, Van Belle H, Janssen P AJ. Evidence that phospolipid turnover in the signal transducing system coupled to the serotonin-S2 receptor sites.  J Biol Chem. 1985;  260 7703-7708
  • 38 Delgado P L, Charney D S, Price L H, Aghajanian G K, Landis H, Heninger G R. Serotonin function and the mechanism of antidepressant action.  Arch Gen Psychiatry. 1990;  47 411-418
  • 39 Dixon J F, Los G V, Hokin L E. Lithium stimulates glutamate release and inositol 1,4,5-triphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices.  Proc Natl Acad Sci. 1994;  91 8358-8362
  • 40 Fargin A, Raymond J R, Lohse M J, Kobilka B K, Caron M G, Lefkowitz R J. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor.  Nature. 1988;  335 358-360
  • 41 Fernstrom J D, Wurtman R J. Brain serotonin content: physiological regulation by plasma neutral amino acids.  Science. 1971;  178 414-416
  • 42 Friedman P A, Kappelman A H, Kaufman S. Partial purification and characterization of tryptophan hydroxylase from rabbit hind brain.  J Biol Chem. 1972;  247 4165-4173
  • 43 Gothert M. Presynaptic serotonin receptors in the central nervous system.  Ann NY Acad Sci. 1990;  604 102-112
  • 44 Graeff F G. Serotonergic systems.  Psychiat Clin North America. 1997;  20 723-739
  • 45 Graham D, Langer S Z. Advances in sodium-ion coupled biogenic amine transporters.  Life Sci. 1992;  51 631-645
  • 46 Hamon M, Bourgoin S, Artaud F, El Mestikawy S. The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system.  J Physiol. 1981;  77 269-279
  • 47 Harber V J. Menstrual dysfunction in athletes: an energetic challenge.  Excer Sport Sci Rev. 2000;  28 19-23
  • 48 Heuring R E, Peroutka S J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes.  J Neurosci. 1987;  7 894-903
  • 49 Hoffman B J, Mezey E, Brownstein M J. Cloning of a serotonin transporter affected by antidepressants.  Science. 1991;  254 579-581
  • 50 Hoyer D. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin).  Pharmacol Rev. 1993;  46 157
  • 51 Johnson Jr R G. Accumulation of biological amines into chromaffin granules: a model of hormone and neurotransmitter transport.  Physiol Rev. 1988;  68 232-307
  • 52 Jörgensen H, Knigge U, Warberg J. Involvement of 5-HT1, 5-HT2 and 5-HT3 receptors in the mediation of the prolactin response to serotonin and 5-hydroxytryptophan.  Neuroendocrinology. 1992;  55 336-343
  • 53 Joseph M H, Young S N, Curzon G. The metabolism of a tryptophan load in rat brain and liver. The influence of hydrocortisone and allopurinol.  Biochem Pharmacol. 1976;  25 2599-2604
  • 54 Kandel E R, Schwartz J H, Jessell T M (eds). Neurowissenschaften. Eine Einführung. Heidelberg; Spektrum 1996
  • 55 Kaplan L M. Herrisons principles of internal medicine. Grayhill 1998: 584-592
  • 56 Kennett G A. Serotonin receptors and their function.  Neuropharmacol. 1997;  36 1-12
  • 57 Klemfuss H. Rythms and the pharmacology of lithium.  Pharmacol Ther. 1992;  56 53-78
  • 58 Knott P J, Curzon G. Free tryptophan in plasma and brain tryptophan metabolism.  Nature. 1972;  239 452-453
  • 59 Langer S Z, Galzin A M, Poirier M F, Loo H, Sechter D, Zarifian E. Association of [3H]impiramine and [3H]paroxetine binding with the 5-HT transporter in brain and platelet: relevance to studies in depression.  J Receptor Res. 1987;  7 499-521
  • 60 Lawrence K M, Falkowski J, Jacobson R R, Horton R W. Platelet 5-HT uptake sites in depression: three concurrent measures using [3H]imipramine and [3H]paroxetine.  Psychopharmacology. 1993;  110 235-239
  • 61 Leake A, Fairbairn A F, McKeith I G, Ferrier I N. Studies on the serotonin uptake binding site in major depressive disorder and control post-mortem brain: neurochemical and clinical correlates.  Psychiatry Res. 1991;  39 155-165
  • 62 Lembo P M, Albert P R. Multiple phosphorylation sites are required for pathway-selective uncoupling of the 5-hydroxytryptamine1A receptor by protein kinase C.  Mol Pharmacol. 1995;  48 1024-1029
  • 63 Lenox R H, Watson D G. Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic depressive illness.  Clin Chem. 1994;  40 309-14
  • 64 Lesch K P, Aulakh C S, Wolozin B L, Tolliver T J, Hill J L, Murphy D L. Regional brain expression of serotonin transporter mRNA and its regulation by reuptake inhibiting antidepressants.  Brain Res Mol Brain Res. 1993;  17 31-35
  • 65 Lesch K P, Wolozin B L, Estler H C, Murphy D L, Riederer P. Isolation of a cDNA encoding the human brain serotonin transporter.  J Neural Transm. 1993;  91 67-72
  • 66 Lesch K P, Wolozin B L, Murphy D L, Riederer P. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter.  J Neurochem. 1993;  60 2319-2322
  • 67 Maes M, Meltzer Y H, D’Hondt P, Cosyns P, Blockx P. Effects of serotonin precursors on the negative feedback effects of glucocorticoids on hypothalamic-pituitary-adrenal axis function in depression.  Psychoneuroendocrinol. 1995;  20 149-167
  • 68 Manning J S, Connor P D. Antidepressant augmentation with lithium.  J Fam Pract. 1994;  39 379-383
  • 69 Mans A M, Biebuyck J F, Hawkins R A. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier.  Am J Physiol. 1983;  245 C74-C77
  • 70 Marsden C A. The neuropharmacology of serotonin in the central nervous system. In: Feighner JP, Boyer WF (eds) Selective Serotonin Reuptake Inhibitors. Advances in Basic Research and Clinical practice. Chichester; John Wiley & Sons 1996
  • 71 Marsden C A, Conti J, Strope E, Curzon G, Adams R N. Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanesthetized rat using in vivo voltammetry.  Brain Res. 1979;  171 85-99
  • 72 Marshall I G, Parsons S M. The vesicular acetylcholine transport system.  Tends Neurosci. 1987;  10 174-177
  • 73 Martin G R, Humphrey P PA. Classification review. Receptors for 5-hydroxytryptamine: current perspectives on classification and nomenclature.  Neuropharmacol. 1994;  33 261-273
  • 74 McBride P A, Anderson G M, Hertzig M E, Sweeney J A, Kream J, Cohen D H, Mann J J. Serotonergic responsitivity in male young adults with autistic disorder.  Arch Gen Psychiatr. 1989;  46 213-221
  • 75 McBride P A, Brown R P, DeMeo M, Kelip J, Mieczowsik T, Mann J J. The relationship of 5-HT2 receptor indices to major depressive disorder, personality traits, and suicidal behaviour.  Biol Psychiatr. 1994;  35 295-308
  • 76 McBride P A, Mann J J, Polley M J, Wiley A J, Sweeney J A. Assessment of binding indices and physiological responsiveness of the 5-HT2 receptor on human platelets.  Life Sci. 1987;  40 1799-1809
  • 77 McMenamy R H. Binding of indole analogues to human serum albumin. Effects of fatty acids.  J Biol Chem. 1965;  240 4235-4243
  • 78 McMenamy R H, Lund C C, Oncley J L. Unbound amino acid concentrations in human blood plasma.  J Clin Invest. 1957;  36 1672-1679
  • 79 McMenamy R H, Lund C C, Van Mercke J, Oncley J L. The binding of L-tryptophan in human plasma at 37 °C.  Arch Biochem Biophys. 1961;  93 135-139
  • 80 McMenamy R H, Oncley J L. The specific binding of L-tryptophan to serum albumin.  J Biol Chem. 1958;  233 1436-1447
  • 81 Meeusen R, De Meirleir K. Exercise and brain neurotransmission.  Sports Med. 1995;  20 160-188
  • 82 Mellerup E, Langer S Z. Validity of imipramine platelet binding sites as a biological marker of endogenous depression. A world health organization collaborative study.  Pharmacopsychiatry. 1990;  23 113-117
  • 83 Monferini E, Gaetani P, Rodriguez-y-Baena R, Giraldo E, Parenti M, Zocchetti A, Rizzi C A. Pharmacological characterization of the 5-hydroxytryptamine receptor coupled to adenylyl cyclase stimulation in human brain.  Life Sci. 1993;  52 PL 61-65
  • 84 Nathanson J A. Adrenergic receptors in brain microvessels.  Trends Neurol Sci. 1983;  4 422-425
  • 85 Nathanson J A, Glaser G H. Identification of ß-adrenergic-sensitive adenylate cyclase in intracranial blood vessels.  Nature. 1979;  278 567-569
  • 86 Nicholas L, Dawkins K, Golden R N. Psychoneuroendocrinology of depression. Prolactin.  Psychoneuroendocrinology. 1998;  21 341-358
  • 87 Nicholls J G, Martin A R, Wallace B G. Vom Neuron zum Gehirn. Stuttgart; Fischer 1995: 176-203
  • 88 Okamoto Y, Motohashi N, Hayakawa H, Kikumoto O, Kawai K, Tanra A J. Studies on lithium potentiation of antidepressant treatment.  Yakubutsu-Seishin-Kodo. 1994;  14 19-25
  • 89 Owens M J, Nemeroff C B. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter.  Clin Chem. 1994;  40 288-295
  • 90 Pandey G N, Pandey S C, Dwivedi Y, Sharma R P, Janicak P G, Davis J M. Platelet serotonin2 receptors: a potential biological marker for suicidal behavior.  Am J Psychiatr. 1995;  152 850-855
  • 91 Pandey G N, Pandey S C, Janicak P G, Marks R C, Davis J M. Platelet serotonin2 receptor binding sites in depression and suicide.  Biol Psychiatr. 1990;  28 215-222
  • 92 Pardridge W M. Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier.  J Neurochem. 1977;  28 103-108
  • 93 Pletscher A. The 5-hydroxytryptamine system of blood platelets: physiology and pathophysiology.  Int J Cardiol. 1987;  14 177-188
  • 94 Rudnick G, Clark H. From synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters.  Biochim Biophys Acta. 1993;  1144 249-263
  • 95 Rudnick G, Wall S C. p-Chloroamphetamine induces serotonin release through serotonin transporters.  Biochem. 1992;  31 6710-6718
  • 96 Rudnick G, Wall S C. The molecular mechanism of ”ecstasy¿ [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release.  Proc Natl Acad Sci. 1992;  89 1817-1821
  • 97 Russ M J, Ackerman S H, Banay-Schwartz M, Shindledecker R D, Smith G P. Plasma tryptophan to large neutral amino acid ratios in depressed and normal subjects. J Affec.  Dis. 1990;  19 9-14
  • 98 Sheline Y I, Bardgett M E, Jackson J L, Newcomer H W, Csernansky I G. Platelet serotonin markers and depressive symptomatology.  Biol Psychiatry. 1995;  37 442-447
  • 99 Spector A A. Fatty acid binding to plasma albumin.  J Lipid Res. 1975;  16 165-179
  • 100 Spigset O, Mjörndal T. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.  Neuropsychopharmacol. 1997;  16 285-293
  • 101 Steckler T, Rüggeberg-Schmidt K, Müller-Oerlinghausen B. Human platelet 5-HT2 receptor binding sites re-evaluated: a criticism of recurrent techniques.  J Neural Transm. 1993;  92 11-24
  • 102 Støving R K, Hangaard J, Hansen-Nord M, Hagen C. A review of endocrine changes in anorexia nervosa.  J Psychiatric Res. 1999;  33 139-152
  • 103 Strüder H K, Hollmann W, Donike M, Platen P, Weber K. Effect of O2 availability on neuroendocrine variables at rest and during exercise: O2 breathing increases plasma prolactin.  Eur J Appl Physiol. 1996;  74 443-449
  • 104 Strüder H K, Hollmann W, Weicker H, Schiffer T, Weber K. Blood oxygen pressure affects plasma prolactin concentration in humans.  Acta Physiol Scand. 1999;  165 265-269
  • 105 Takikawa O, Kuroiwa T, Yamazahki F, Kido R. Function and regulation of extrahepatic tryptophan pyrrolase (indoleamine 2,3-dioxygenase): studies of its induction by interferon-γ.  
  • 106 Van de Kar L D. Neuroendocrine aspects of the hypothesis of depression.  Neuroscience Biobehav Rev. 1989;  13 237-246
  • 107 Van de Kar L D, Rittenhous P A, Qian L, Levy A D. Serotonergic regulation of renin and prolactin secretion.  Behav Brain Res. 1996;  73 203-208
  • 108 Van Praag H M. Studies in the mechanism of action of serotonin precursors in depression.  Psychopharmacol Bull. 1984;  20 599-602
  • 109 Weinshank R L, Adham N, Zgombick J, Bard J, Branchek T, Hartig P R. Molecular analysis of serotonin receptor subtypes. In: Langer SZ, Brunello N, Racagni G, Mendlewicz J (eds) Serotonin Receptor Subtypes: Pharmacological Significance and Clinical Implications. Basel; Karger, Int Acad Biomed Drug Res 1 1992: 1-13
  • 110 Yates M, Leake A, Candy M J, Fairbairn A F, McKeith I G, Ferrier I N. 5-HT2 receptor changes in major depression.  Biol Psychiatry. 1990;  27 489-496
  • 111 Yen S SC. Prolactin in human reproduction. In: Yen SSC, Jaffe RB (eds) Reproductive Endocrinology. Physiology, Pathophysiology and Clinical Management. Philadelphia; Saunders 1991: 357-388

PD Dr. H. K. Strüder

Institute of Theorie and Practice of Training and Movement
German Sport University Cologne

Carl-Diem-Weg 6,
50933 Cologne
Germany


Phone: +49 (221) 4995818

Fax: +49 (221) 4995818

Email: strueder@hrz.dshs-koeln.de